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Typical conservative smoothed particle hydrodynamics (SPH) approximations of the 
gradient of a scalar field introduce two errors: one (smoothing error) is due to smoothing 
of the gradient by an integration associated with a kernel function; the other (integration 
error) is due to approximating the integration by summation over all particles within the 
kernel support. When particles are not on a uniform grid, the integration error leads to 
violation of zero-order consistency, i.e. the inability to reproduce a constant field. In this 
paper we confirm that partition of unity is the condition under which the conservative SPH 
approximation achieves both consistence and convergence. We show that this condition 
can be achieved by relaxing a particle distribution under a constant pressure field and 
invariant particle volume. The resulting particle distribution is very similar to that is 
typical for liquid molecules. We further show that with two different typical kernel 
functions the SPH approximation, upon satisfying the partition of unity property, is able 
to achieve very high-order of the integration error, which previously could be shown only 
with particles on a uniform grid. The background pressure used in a weakly compressible 
SPH simulation implies a self-relaxation mechanism, which explains that convergence with 
respect to increasing particle numbers could be obtained in SPH simulations, although not 
predicted by previous numerical analysis. Furthermore, by relating the integration error 
to the background pressure, we explain why the previously proposed transport-velocity 
formulation of SPH (S. Adami et al. (2013) [1]) is able to achieve unprecedented accuracy 
and stability.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a mesh-free Lagrangian simulation method introduced in Refs. [11] and [4]. It 
has a wide range of applications ranging from astrophysics to complex multi-phase flows [13,14]. In SPH the hydrodynamic 
equations are discretized by particles, and each particle generally can assume an arbitrary location in space. At a particle 
location ra , the SPH approximation of the gradient of a smooth scalar field ψ(r) is obtained by the following three steps,

∇ψ(ra) ≈
∫
V

∇ψ(r)W (ra − r,h)dV = −
∫
V

ψ(r)∇W (ra − r,h)dV ≈ −
∑

b

ψ(rb)∇W (ra − rb,h)Vb, (1)
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where W (r, h) is a kernel function with compact support with the general radially symmetric form

W (r,h) = h−d w(s), (2)

where s = r/h and r = |r|, and d is the number of spatial dimensions. The parameter h is a smoothing length, and when it 
tends to zero W (r, h) approaches the Dirac delta function. The first stage in Eq. (1) is called filtering or smoothing approxi-
mation, and the error introduced by this stage is called smoothing error Es , which is the difference between the smoothing 
approximation and the exact derivative. The second stage is integration by parts assuming that the kernel function vanishes 
at the support boundaries. The third stage approximates the integral by summation over all particles, where Vb denotes the 
volume of a particle b, within the kernel support. The error introduced by this stage is called integration error Er , which 
is the difference between the final SPH approximation and the smoothing approximation. Therefore, the overall truncation 
error of the SPH approximation is Et = Es + Er .

Monaghan [13] showed that for the B-spline and quintic kernels Es = O (h2). Quinlan et al. [17] analyzed Er analytically 
for particles on a uniform grid and numerically when these particles are randomly perturbed. For particles on a uniform 
grid, or ordered particles, Er = O [(�/h)β+2], where � is the grid size and β is determined by the smoothness (vanishing 
derivatives up to order β) of the kernel-support boundary. For randomly perturbed particles, Quinlan et al. [17] showed that 
the SPH approximation is not zero-order consistent, i.e. it does not reproduce the vanishing derivative of a constant-valued 
function. This inconsistency is introduced by Er , and does not approach zero as �/h decreases. The failure of zero-order 
consistency is often considered as a major drawback of SPH [17,10]. Remedies have been proposed, such as the reproduc-
ing kernel (RK) method [10,18]. When applied for SPH, the RK method reproduces a constant pressure field, it violates, 
however, the momentum conservation property, one of the most important properties of the original SPH method [13,14], 
as particle–particle interactions are no longer antisymmetric. In practice, SPH simulations exhibit convergent behavior with 
increasing particle numbers as long as the total momentum is conserved [15,7,16].

In this paper, we address this apparent contradiction and consider a typical anti-symmetric formulation based on Eq. (1)
for the conservative discretization of pressure forces in the hydrodynamic equations. We introduce inter-particle faces that 
separate the volume of a particle from its neighboring particles. Based on a simple integration rule we show that zero-order 
consistency and asymptotic decay of Er can be achieved when volumes defined by the particles and the inter-particle faces 
partition the entire domain, i.e. constitute a partition of unity. We show that this condition, without compromising the 
conservation property, can be achieved by relaxing particles under a constant pressure field and with invariant particle 
volume. We also demonstrate by numerical experiments that the convergence rate of Er for such a relaxed distribution is of 
the same high order as for particles on a uniform grid. By comparing the particle relaxation approach and the estimation of 
Er , we explain why many SPH simulations in practice show clearly convergent behavior with increasing particle numbers, 
and why a recently developed SPH formulation [1] is able to achieve unprecedented numerical accuracy and stability.

2. Anti-symmetric formulation of the SPH approximation

A typical anti-symmetric formulation of the SPH approximation based on Eq. (1) is obtained by

∇ψa = ∇ψa + ψb∇1 ≈ −
∑

b

(ψa + ψb)∇Wab Vb = −2
∑

b

ψab∇Wab Vb (3)

where ∇ψa ≡ ∇ψ(ra), ψa ≡ ψ(ra), ∇Wab ≡ ∇W (ra − rb, h) and ψab ≡ (ψa + ψb) /2. Note the anti-symmetric property of 
the derivative of the kernel function, i.e. ∇Wab = −∇Wba . With Eq. (3) the SPH discretization for computing the pressure 
forces acting on a particle assumes the form

Fa = Va∇pa ≈ −2
∑

b

pab∇Wab Va Vb, (4)

which implies momentum conservation of the particle system by∑
a

Fa = −2
∑

a

∑
b

pab∇Wab Va Vb = 0. (5)

If only one particle pair is considered, the interaction force is

Fab = −2pab∇Wab Va Vb = −pab Aabeab, (6)

where eab is the unit vector from particle a to particle b. Since pab and Aabeab can be considered as inter-particle pressure 
and inter-particle face area, respectively [6], Eq. (4) can be considered as an approximation of the surface integral over all 
the inter-particle faces between particle a and its neighbors within the support. The transformation between the volume 
integral of Eq. (3) to the surface integral of Eq. (4) is done by multiplying Va , the volume of particle a. Note that, the volume 
of a particle is defined implicitly, i.e. although the magnitudes of the volume Va and the inter-particle face area Aabeab are 
known, non-trivial reconstruction is required to determine the exact form of inter-particle faces.
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