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A spectral algorithm based on the immersed boundary conditions (IBC) concept has 
been developed for the analysis of flows in channels bounded by vibrating walls. The 
vibrations take the form of travelling waves of arbitrary profile. The algorithm uses a 
fixed computational domain with the flow domain immersed in its interior. Boundary 
conditions enter the algorithm in the form of constraints. The spatial discretization uses 
a Fourier expansion in the stream-wise direction and a Chebyshev expansion in the 
wall-normal direction. Use of the Galileo transformation converts the unsteady problem 
into a steady one. An efficient solver which takes advantage of the structure of the 
coefficient matrix has been used. It is demonstrated that the method can be extended 
to more extreme geometries using the overdetermined formulation. Various tests confirm 
the spectral accuracy of the algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The determination of flows in channels with vibrating walls requires solving a moving boundary problem. This class 
of problems has been of interest in many application areas including surface waves, interfacial problems, phase change 
problems, flow induced vibrations, peristaltic and pulsatile flows in the esophagus and flows through the vasculatures due 
to cardiac actions, to name just a few. The available algorithms can be classified either as Lagrangian or Eulerian [1]. Mixed 
methods involving combinations of Lagrangian and Eulerian techniques have also been pursued [1]. Each fluid element is 
followed individually in the Lagrangian algorithms, resulting in a need for a coordinate system that moves with the fluid. 
Mesh tangling leads to significant restrictions on the overall applicability of these methods [1]. The Eulerian algorithms rely 
on coordinate systems that are stationary in a laboratory frame of reference or may move in a prescribed manner. Such 
algorithms can be divided into fixed grid methods, adaptive grid methods and various mapping methods.

In the fixed grid methods, the grid is fixed in the solution domain and the locations of the moving boundaries are 
tracked using either surface [1,2] or volume tracking procedures [1,3]. Surface tracking relies on a set of points whose 
motion is tracked during the solution process, allowing precise identification of the boundary locations; these boundaries are 
represented as a set of interpolated curves [3,4]. The volume tracking algorithms, on the other hand, work by reconstructing 
the boundary whenever necessary instead of storing the boundary locations. The presence of a convenient marker within a 
computational cell and its quantity form the basis of the various reconstruction methodologies. Different versions of volume 
tracking algorithms exist, e.g. VOF (Volume of Fluid) [5], MAC (Marker and Cell) [6] and Level Set [7,8] methods. These 
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methods are based on standard spatial discretization schemes with low-order spatial accuracy consistent with the diffused 
boundary locations resulting from the tracking procedures.

The adaptive grid methods use numerical mappings to adjust the grids at each time step so that one of the grid lines 
always overlaps with the boundary location. The computational costs are very high due to grid reconstruction at each time 
step, e.g. the grid construction consumed about 75% of the computational cost for the problem discussed in [9]. The spatial 
discretization technique has a smaller effect on the overall computational costs. The need for high solution accuracy leads to 
numerous challenges as the total error has contributions from the grid generation as well as from the spatial and temporal 
discretizations of the field equations. The use of mappings based on the Schwarz–Christoffel transformation provides access 
to higher accuracy at a reasonable cost as one only needs to determine mapping parameters and these parameters can be 
determined with near-spectral accuracy [10–12]. An analytical mapping of the irregular physical domain to a rectangular 
computational domain can help improve the accuracy at the cost of increased complexity of the field equations [13,14]. 
However, such mappings are available only for a limited class of geometries [1] and reconstruction of the coefficient matrix 
during each time step can add to the overall computational cost by a substantial margin [14–20].

Immersed or fictitious boundaries represent a new concept with the potential to increase the accuracy while maintaining 
the computational efficiency. This concept is due to Peskin [21] and has been developed in the context of cardiac dynamics; 
see [22,23] for reviews. The common limitation is the spatial accuracy, as most of these methods are based on either 
low-order finite-difference, finite-volume or finite-element techniques [22–26]. The second, less known limitation is the use 
of the local fictitious forces required to enforce the no-slip and no-penetration conditions. These forces locally affect the 
flow physics and this may lead to incorrect estimates of derivatives of flow quantities, i.e. misrepresentation of the local 
wall shear. This problem is likely to be more pronounced in the case of methods with high spatial accuracy.

Spectral methods provide the lowest error for the spatial discretization but are generally limited to solution domains with 
regular geometries. The first spectrally accurate implementation of the immersed boundary concept is given in [27]. We shall 
refer to this method as the immersed boundary conditions (IBC) method in the rest of this presentation. The IBC method 
relies on a purely formal construction of boundary constraints in order to generate the required closing relations. The spatial 
discretization relies on Fourier and Chebyshev expansions in the stream-wise and wall-normal directions, respectively, and 
thus provides the ability to attain machine level accuracy. The method could be viewed as gridless as it uses global basis 
functions which span the complete solution domain. The construction of boundary constraints relies on the representation 
of the physical boundaries in the spectral space and nullifying the relevant Fourier modes. The method involves two types 
of Fourier expansions, one for the field equations and one for the boundary relations and, thus, the rate of convergence of 
both expansions determines the limits of its applicability. The programming effort associated with accounting for changes 
in geometry is reduced to the specification of a set of Fourier coefficients which need to be provided as an input. The 
additional attractiveness of the IBC method is associated with the precise mathematical formalism, high accuracy and sharp 
identification of the location of time-dependent physical boundaries. The method has been extended to two-dimensional 
unsteady problems [28], moving boundary problems involving Laplace [29] and biharmonic [30] operators, the complete 
Navier–Stokes system [31], to operators involving different classes of non-Newtonian fluids [32,33], to three-dimensional 
operators [34,35] as well as to operators expressed in cylindrical coordinate systems [36]. Its accuracy has been improved 
through the use of the overdetermined formulation [37]. The efficiency has been increased by an order of magnitude through 
the development of specialized solvers which account for the special structure of the coefficient matrix [38,39]. The method 
has been used to identify the laminar drag-reducing grooves [16–20] and to study the effects of various grooves on the flow 
stability [40–46].

This work is focused on the development of an efficient algorithm suitable for the analysis of changes in the pressure 
gradient required to drive a specified flow rate through a vibrating channel. Vibrations in the form of travelling waves, such 
as those found in peristaltic pumping, are of primary interest. The identification of the most effective forms of such waves 
is of interest. Section 2 provides the problem formulation. Section 3 describes the form of the field equations suitable for 
the numerical solution. Section 4 discusses the discretization of the field equations. Section 5 provides a description of the 
proper construction of the boundary constraints. Section 6 discusses the iterative solution procedure. Section 7 describes the 
linear solver used in the solution. Section 8 provides descriptions of various numerical tests which demonstrate the spectral 
accuracy of the algorithm. Section 9 describes improvements resulting from the overdetermined formulation. Section 10
describes the validation of the algorithm. Section 11 provides a short summary of the main conclusions.

2. Problem formulation

Consider steady, two-dimensional flow of a fluid confined in a channel bounded by two parallel walls extending to ±∞
in the X-direction and placed at a distance 2h apart as shown in Fig. 1. The flow is driven in the positive X-direction by a 
pressure gradient resulting in the velocity and pressure fields, and the flow rate of the form

v0(X, Y ) = (
1 − Y 2,0

)
, p0(X, Y ) = −2X/Re, Ψ0 = Y − Y 3

3
+ 2

3
, Q 0 = 4

3
(2.1)

where v0 = (u0, v0) denotes the velocity vector scaled with the maximum of the X-velocity umax , p0 stands for the pressure 
scaled with ρu2

max where ρ stands for the density, Ψ0 stands for the stream function, Q 0 denotes the flow rate, the Reynolds 
number is defined as Re = umaxh/ν where ν stands for the kinematic viscosity, and h has been used as the length scale. 
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