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The discontinuous Petrov–Galerkin methodology with optimal test functions (DPG) of 
Demkowicz and Gopalakrishnan [18,20] guarantees the optimality of the solution in an 
energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov–
Galerkin methods use identical trial and test spaces, Petrov–Galerkin methods allow these 
function spaces to differ. In DPG, test functions are computed on the fly and are chosen to 
realize the supremum in the inf–sup condition; the method is equivalent to a minimum 
residual method. For well-posed problems with sufficiently regular solutions, DPG can be 
shown to converge at optimal rates—the inf–sup constants governing the convergence are 
mesh-independent, and of the same order as those governing the continuous problem [48]. 
DPG also provides an accurate mechanism for measuring the error, and this can be used to 
drive adaptive mesh refinements.
We employ DPG to solve the steady incompressible Navier–Stokes equations in two 
dimensions, building on previous work on the Stokes equations, and focusing particularly 
on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We 
apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven 
cavity flow, backward-facing step, and flow past a cylinder problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Typical solutions of incompressible flow problems involve both fine- and large-scale phenomena, so that a uniform 
finite element mesh of sufficient granularity will at best be wasteful of computational resources, and at worst be infeasible 
because of resource limitations. Thus adaptive mesh refinements are desirable. In industry, the adaptivity schemes used 
are often ad hoc, requiring a domain expert to predict features of the solution. A badly chosen mesh may cause the code 
to take considerably longer to converge, or fail to converge altogether. Typically, the Navier–Stokes solver will be just one 
component in an optimization loop, which means that any failure requiring human intervention is costly.
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Our aim, therefore, is to develop a solver for the incompressible Navier–Stokes equations that provides robust adaptivity 
starting from a coarse mesh.1 By robust, we mean both that the solver always converges to a solution in predictable time, 
and that the adaptive scheme is independent of the problem—no special expertise is required for adaptivity. In each of 
the adaptive experiments in the present work, we begin with a mesh that simply captures the geometry, perform some 
preliminary refinements to ensure that elements are roughly isotropic, and proceed with the automatic adaptivity algorithm 
described below.

1.2. Approach

The cornerstone of our approach will be the discontinuous Petrov–Galerkin with optimal test functions (DPG) finite el-
ement methodology recently developed by Leszek Demkowicz and Jay Gopalakrishnan [18,20]. Whereas Bubnov–Galerkin 
methods use the same function space for both test and trial functions, Petrov–Galerkin methods allow the spaces for test 
and trial functions to differ. In DPG, the test functions are computed on the fly and are chosen to minimize the residual. For 
a very broad class of well-posed problems, DPG offers provably optimal convergence rates with a modest stability constant—
the “inf–sup” constants governing the convergence are mesh-independent, and of the same order as those governing the 
continuous problem [48]. In some of our experiments, DPG not only achieves the optimal rates, but gets very close to the 
best solution available in the discrete space. DPG also provides an accurate mechanism for measuring the error, and this can 
be used to drive adaptive mesh refinements.

Previously, we have studied DPG applied to the Stokes problem in some detail, with theoretical results predicting optimal 
rates of convergence, and numerical results that appear to show even more: it appears that we asymptotically approach the 
best approximation error available in the discrete space [48]. We began with Stokes because the Stokes equations are 
more susceptible than Navier–Stokes to rigorous mathematical analysis; our strategy is to use the theory developed for 
Stokes to guide the practical application to Navier–Stokes. Because of the success with the Stokes equations and their close 
relationship to the incompressible Navier–Stokes equations, we are optimistic that DPG can achieve good results with the 
latter as well.

Central to our study of these problems has been the use and further development of Camellia [47], a toolbox we devel-
oped for solving DPG problems which uses Sandia’s Trilinos library of packages [29]. At present, Camellia supports arbitrary 
1D meshes, 2D meshes of triangles and quads, and 3D meshes of hexahedra, provides mechanisms for easy specification of 
DPG variational forms, supports h- and p-refinements, and employs a distributed stiffness matrix and solution representa-
tion, among other features. In the future, we plan to enhance support for meshes of arbitrary spatial dimension, and add 
support for space–time elements and a distributed mesh representation.

1.3. Literature review: adaptive Navier–Stokes

The application of adaptive mesh refinement to incompressible flow problems is far from new. Here, we mention a few 
relevant references for finite element methods, spectral element methods, and least squares methods. DPG is a Petrov–
Galerkin finite-element method (FEM), a generalization of the classical (Bubnov) Galerkin method. As early as 1993, Oden 
presented an approach for hp-adaptive FEM for the incompressible Navier–Stokes equations [42].

Spectral element methods (SEM) employ basis functions with global support, in contrast to FEM, which employ basis 
functions with support limited to the element. Karniadakis and Sherwin have produced a compendium of hp-adaptive SEM 
for computational fluid dynamics [31]. Galerkin FEM and SEM for incompressible flow problems require careful selection 
of velocity and pressure spaces; unstable discretizations can result in locking or non-convergence. This contrasts with the 
present work, in which we use equal-order discretizations for velocity and pressure, and for smooth solutions we obtain 
optimal rates of convergence in both variables. Moreover, DPG allows the discretizations for velocity and pressure to be 
chosen independently.

Least-squares finite and spectral element methods (LSFEM and LSSEM) employ formulations that minimize a residual, 
typically in the L2 norm. Like DPG, least-squares methods allow independent selection of velocity and pressure discretiza-
tions. Recently Ozcelikkale and Sert have applied hp-adaptive LSSEM to model problems in 2D incompressible flow [43]. 
Like least-squares, DPG is a minimum-residual method—in fact, DPG can be understood as a least-squares method which 
minimizes the DPG energy norm. In contrast to classical least-squares methods, DPG’s energy norm can be prescribed by 
appropriate selection of the norm on the test space, allowing it to avoid some of the problems classically exhibited by 
least-squares, such as over-diffusivity.

1 Ultimately, we would like to produce such a solver for incompressible Navier–Stokes in arbitrary dimensions, for a range of Reynolds numbers limited 
only by the numerical precision of the machine. The scope of the present work is more modest: we limit ourselves to steady two-dimensional flows; 
the largest Reynolds number that we employ is 104. We restrict ourselves thus both to maintain a focused discussion and because transient and three-
dimensional flows impose additional implementation challenges. In upcoming work, we plan to address transient and three-dimensional problems.
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