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a b s t r a c t

The material point method exhibits kinematic locking when traditional linear shape func-
tions are used with a rectangular grid. The locking affects both the strain and the stress
fields, which can lead to inaccurate results and nonphysical behavior. This paper presents
a new anti-locking approach that mitigates the accumulation of fictitious strains and stres-
ses, significantly improving the kinematic response and the quality of all field variables.
The technique relies on the Hu–Washizu multi-field variational principle, with separate
approximations for the volumetric and the deviatoric portions of the strain and stress
fields. The proposed approach is validated using a series of benchmark examples from both
solid and fluid mechanics, demonstrating the broad range of modeling possibilities within
the MPM framework when combined with appropriate anti-locking techniques and
algorithms.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The material point method (MPM) is a numerical technique that is used primarily for solving problems in which large,
flow-like deformations occur. The method’s effectiveness is due in part to the hybrid Eulerian–Lagrangian description of mo-
tion that lends itself nicely to applications in a wide variety of complex engineering problems, including those in both the
solid and fluid mechanics regimes.

The formulation of the MPM is similar in many regards to the well known Finite Element Method (FEM). This association
has, at times, proved beneficial—the MPM has been able to leverage existing knowledge and results that come along with a
more established and well-studied technique. Conversely, several known shortcomings associated with the FEM have been
inherited by the MPM. Perhaps the most notable of these shortcomings is the kinematic locking that can occur due to the
interpolation functions constructed on the MPM background grid/mesh. In this context, the term locking refers to the
build-up of fictitious stiffness that is due to an element/cell’s inability to reproduce correct deformation mode shapes.
The end result is a system that is too stiff, leading to poor kinematics and erroneous strains (and thus incorrect stresses).

In this paper, kinematic locking is identified within the confines of the MPM. It is shown that both volumetric and shear
locking arise in the standard MPM algorithm when traditional, linear shape functions are used in conjunction with a regular,
rectangular grid. An anti-locking algorithm based on the well known Hu–Washizu variational principle is proposed, and its
effectiveness is highlighted using a series of benchmark examples from both fluid and solid mechanics. It is shown that with
appropriate anti-locking techniques, the MPM can serve as a unified framework for analyzing systems exhibiting a full range
of solid and fluid behavior.

0021-9991/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.04.032

⇑ Corresponding author.
E-mail addresses: cmast@uw.edu (C.M. Mast), pmackenz@uw.edu (P. Mackenzie-Helnwein), parduino@uw.edu (P. Arduino), gmiller@uw.edu

(G.R. Miller), geoshin@gmail.com (W. Shin).

Journal of Computational Physics 231 (2012) 5351–5373

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2012.04.032
mailto:cmast@uw.edu
mailto:pmackenz@uw.edu
mailto:parduino@uw.edu
mailto:gmiller@uw.edu
mailto:geoshin@gmail.com
http://dx.doi.org/10.1016/j.jcp.2012.04.032
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


The paper is organized as follows: Section 2 provides a brief overview of the MPM and its variants. A summary of our
notation, as well as specific details of the MPM algorithm that are not new but helpful for the less familiar reader are given
in Appendix A. The mathematical framework and the algorithmic development of the studied anti-locking strategies are gi-
ven in Section 3, where both the theoretical background and the implementation aspects are given separate spaces. Section 4
provides a series of examples, designed to illustrate applicability of the proposed techniques to both fluid and solid appli-
cations, and to verify their accuracy through comparison to experimental data and analytical solutions. Section 5 contains
a brief summary and conclusions.

2. Overview of the material point method

The MPM follows from the more general class of numerical schemes known as PIC, or Particle-In-Cell methods. The first
PIC technique was developed in the early 1950s [21] and was used primarily for applications in fluid mechanics. Early imple-
mentations suffered from excessive energy dissipation, rendering them obsolete when compared to newer, more effective
methods. In 1986, Brackbill and Ruppel solved many of the inherent problems related to energy dissipation and introduced
FLIP—the Fluid Implicit Particle method [13]. The FLIP technique was modified and tailored for applications in solid mechan-
ics by Sulsky et al. [51,54] and has since been referred to as the material point method [52].

The method was born out of a need to combine fluid-like, large deformations with a history-dependent material response.
Significant research has focused on applications of this type (e.g., [11,12,17,34,59,61,40]), but much work has also been done
in additional areas—pushing the capabilities of the MPM and exploring new applications. These include applications in geo-
technical engineering [3,60,66], fracture and material failure [15,19,20,41,44,45,53,55], contact, material interaction, and
penetration [6,7,23,24,27,33,38,46,42,64,65], as well as general implementation considerations [5,25,28,29,36,48,50].

The mathematical foundations and underpinnings of the technique have been explored in detail and are well documented
in several publications, e.g., [54,6,29,14,18,35]. A detailed presentation of the numerical implementation for the standard
algorithm can be found in these references. For notational convenience, key equations and algorithmic steps are summarized
in Appendix A. The curious reader is encouraged to explore the supplied references for additional details regarding the stan-
dard algorithm.

In most implementations of the MPM, it is common to use standard linear shape functions defined on a regular, rectan-
gular grid. This is not, however, a limitation or requirement of the technique. Researchers have demonstrated the benefits of
using an irregular grid consisting of either triangular or quadrilateral cells, e.g., [59,57]. Others have investigated the use of
higher-order shape functions—2nd and 3rd order B-splines [2,49], standard quadratic shape functions [2], as well as a Radial
Basis Function [22]—in lieu of linear shape functions. In these cases the use of a higher order shape function eliminates many
of the non-physical results associated with traditional implementations. However, the use of the non-linear functions can
result in an increase in computational cost, potentially limiting the effectiveness of such approaches. Given the simplicity
of low-order elements/cells, they remain a polular choice in FEM and MPM applications. To date, linear interpolation func-
tions are the most common choice found in the MPM literature.

The use of linear shape functions does not come without shortcomings. In particular, the discontinuous gradient leads to
potential cell-crossing errors, and volumetric locking due to the insufficient representation of an isochoric displacement/veloc-
ity field [10] and shear locking due to non-physical coupling of normal strains and shear strains [1]. The cell-crossing error is
caused by the sudden jump in strain rate as a particle moves from one cell to another. A potential solution to the cell-crossing
error is to counteract the discontinuity of the gradient at the interface between adjacent cells by introducing an enhanced
gradient field [63]. Alternatively, the particle can be represented using a finite domain, effectively smoothing out the discon-
tinuity. This idea was first developed in the Generalized Interpolation Material Point (GIMP) method [8] and has since been
applied to wide variety of engineering problems, e.g., [16,30–32,56]. A similar variant of the MPM, the Convected Particle
Domain Interpolation (CPDI) technique [43], effectively combats the discontinuous gradient issue by introducing a parallel-
ogram-shaped particle domain that is consistently updated using the deformation gradient at the particle. Unfortunately
these approaches do not address or alleviate kinematic locking.

In fact, until very recently [2,4,37,47], the topic has not been reported in the literature. The closest references are the
works [2,22,49], which have found that representation and integration errors are reduced significantly by introducing higher
order shape functions on the background grid. This is in agreement with related observations in the FEM, where increasing
the interpolation order not only improves accuracy but also reduces locking phenomena.

Locking in the standard algorithm can be quite significant. Consider Fig. 1, in which two sample problems from fluid and
solid mechanics (the two opposing ends of the materials spectrum) are used to highlight kinematic locking (see Section 5 for
details regarding the MPM parameters, material parameters, etc., used for these analyses). Fig. 1(a) depicts a simplified dam
break analysis in which a rectangular water column, initially in a hydrostatic state, flows to the right due to gravity. A short
time later in Fig. 1(b), the water column has shifted but in no way represents a flowing mass of water. In addition to the poor
kinematics, the stress state is relatively chaotic and differs by several orders of magnitude from the starting state. This large
deformation analysis is a prime example of volumetric locking within the MPM. On the solid end of the materials spectrum,
shear locking is prevalent as demonstrated by the shear stress distribution for the cantilever beam shown in Fig. 1(c) (it
should be noted that the stress distribution alone is not necessarily an indication of locking, however, in this particular case,
it is). This beam model is fixed on the left side, with prescribed initial velocity consistent with the first mode of vibration. The
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