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a b s t r a c t

We develop a technique for generating a set of optimized local basis functions to solve
models in the Kohn–Sham density functional theory for both insulating and metallic sys-
tems. The optimized local basis functions are obtained by solving a minimization problem
in an admissible set determined by a large number of primitive basis functions. Using the
optimized local basis set, the electron energy and the atomic force can be calculated accu-
rately with a small number of basis functions. The Pulay force is systematically controlled
and is not required to be calculated, which makes the optimized local basis set an ideal tool
for ab initio molecular dynamics and structure optimization. We also propose a precondi-
tioned Newton–GMRES method to obtain the optimized local basis functions in practice.
The optimized local basis set is able to achieve high accuracy with a small number of basis
functions per atom when applied to a one dimensional model problem.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In scientific computation of systems with large number of degrees of freedom, an efficient choice of basis functions be-
comes desirable in order to reduce the computational cost. In this paper, we focus on the choice of efficient basis sets for the
Kohn–Sham density functional theory (KSDFT) [1,2], which is the most widely used electronic structure theory for con-
densed matter systems. The methods and concepts illustrated here are also useful for other applications.

In KSDFT, the quantities of interest are the electron energy E(R) and the atomic force F(R). Here we denote by
R ¼ ðR1;R2; . . . ;RNA Þ

T the atomic positions, where NA is the number of atoms. The atomic force is expressed in terms of the
derivatives of the electron energy with respect to the atomic positions as FðRÞ ¼ � @EðRÞ

@R . This is an important quantity in many
applications including structure optimization and first principle molecular dynamics. The electron energy is a functional of a
set of Kohn–Sham orbitals fwig

N
i¼1 where N is the number of electrons in the system. To illustrate the idea with minimal tech-

nicality, let us consider for the moment a system of non-interacting electrons at zero temperature. The energy functional for
non-interacting electrons takes the form

E fwiðxÞg
N
i¼1; R

� �
¼ 1

2
PN
i¼1

Z
jrwiðxÞj

2dxþ
Z

Vðx; RÞ
PN
i¼1
jwiðxÞj

2dx: ð1Þ

0021-9991/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.03.009

⇑ Corresponding author.
E-mail addresses: linlin@lbl.gov (L. Lin), jianfeng@cims.nyu.edu (J. Lu), lexing@math.utexas.edu (L. Ying), weinan@math.princeton.edu (W. E).

1 Present address: Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Journal of Computational Physics 231 (2012) 4515–4529

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2012.03.009
mailto:linlin@lbl.gov
mailto:jianfeng@cims.nyu.edu
mailto:lexing@math.utexas.edu
mailto:weinan@math.princeton.edu
http://dx.doi.org/10.1016/j.jcp.2012.03.009
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


The first term and the second term in (1) are the kinetic energy and the potential energy of the system, respectively. The
energy E(R) as a function of atomic positions is given by the following minimization problem

EðRÞ ¼ min
fwiðxÞgN

i¼1

E fwiðxÞg
N
i¼1; R

� �
;

s:t:
R

w�i ðxÞwjðxÞdx ¼ dij; i; j ¼ 1; . . . ;N:
ð2Þ

We denote by fwiðx; RÞgN
i¼1 the minimizer. It can be readily shown that fwiðx; RÞgN

i¼1 are the lowest N eigenfunctions of the
Hamiltonian operator H(R), which takes the form

HðRÞ ¼ �1
2

Dx þ Vðx; RÞ: ð3Þ

Using the Hamiltonian operator, the electron energy has an alternative expression without the explicit dependence on the
orbitals fwig

N
i¼1:

EðRÞ ¼ Tr½HðRÞvðHðRÞ � lðRÞÞ� � Tr½g0ðHðRÞÞ�; ð4Þ

where v(x) = 1 if x < 0 and is 0 otherwise. l(R) is the chemical potential, which takes value between the Nth and (N + 1)th
eigenvalues of H to control the number of electrons. Here we assume there is a positive gap between the Nth eigenvalue
and the N + 1th eigenvalue corresponding to the Hamiltonian H(R).

Since all the quantities depend on the atomic positions R, to simplify the notation we drop the dependence on R unless
otherwise specified. If we approximate the eigenfunctions fwig

N
i¼1 by linear combination of a set of basis functions

U ¼ ð/1; . . . ;/Nb
Þ, the Hamiltonian operator H is discretized into a finite dimensional matrix UTHU (here and in the following,

we will use the linear algebra notation: /T
i H/j ¼ h/ijHj/ji). The number of basis functions Nb is therefore called the discret-

ization cost. The electron energy and the force can be expressed in terms of the discretized Hamiltonian operator as

EU ¼ Tr g0 UTHU
� �� �

;

FU;I ¼ �
@EU

@RI
¼ �Tr g00 UTHU

� �
UT @H

@RI
U

� 	
� 2Tr g00 UTHU

� �
UTH

@U
@RI

� 	
: ð5Þ

FU,I is the Ith component of the force. In what follows the second equation in (5) is also written in a compact form as

FU ¼ �
@EU

@R
¼ �Tr g00 UTrHU

� �
UTr @H

@R
U

� 	
� 2Tr g00 UTrHU

� �
UTrH

@U
@R

� 	
: ð6Þ

Choosing basis functions U adaptively with respect to the atomic positions R has obvious computational advantages, as it
allows the possibility to reduce the discretization cost by a significant amount while maintaining the accuracy for the eval-
uation of the electron energy and atomic forces. Since the electron energy is defined variationally as in (2), an accurate basis
set should minimize the electron energy. However, choosing the basis functions adaptively gives rise to some difficulties in
the evaluation of the force (5) which requires the calculation of @U

@R. In electronic structure theory, the contribution from @U
@R is

referred to as the Pulay force [3]. We will henceforth adopt this terminology. The Pulay force originates from the incomplete-
ness of the basis set, and has been found to be important to obtain the force with reliable accuracy for structure optimization
or first principle molecular dynamics [3,4]. The calculation of the Pulay force can be quite expensive even if the basis func-
tions U have analytical expressions, and the calculation of the Pulay force becomes almost intractable if the basis functions
are defined implicitly such as in the adaptive mesh method [5–8]. We would like to systematically reduce the Pulay force so
that the approximation

@EU

@R
� Tr g00 UTHU

� �
UT @H

@R
U

� 	
ð7Þ

becomes adequate.
The key observation in this paper is that minimizing the electron energy and reducing the Pulay force can be simulta-

neously achieved by the following optimization procedure

min
U�V;UT U¼I

EU ¼ min
U�V;UT U¼I

Tr g0 UTHU
� �� �

: ð8Þ

Here V is an admissible subset of the space spanned by a set of primitive basis functions which are independent of R. Later V
will be referred to as the admissible set. We select from V a small number of R-dependent optimized basis functions
U ¼ ðU1; . . . ;UNb

Þwhich give rise to the lowest electron energy in V. The Euler–Lagrange equation for the minimization prob-
lem (8) reads

HUg00ðU
THUÞ ¼ UK;

UTU ¼ I;

(
ð9Þ
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