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Abstract

In a recent article (Carri GA, Batman R, Varshney V, Dirama TE. Polymer 2005;46:3809 [17]) we presented a model for networks of

helical polymers. In this article we generalize our results to include the effect of temperature and focus on the mechanical, conformational

and thermo-elastic properties of the network. We find that the non-monotonic stress–strain behavior observed at constant temperature also

appears in the stress–temperature behavior at constant strain. The origin of this behavior is traced to the induction and melting of helical

beads by the application of large strains or reduction in temperature. Other conformational properties of the polymer strands are also

discussed. We also study the network entropy and heat capacity, and find a non-monotonic dependence on temperature and strain. Our study

shows that the entropy is controlled by the helical content whenever the latter is significant. Otherwise, the entropy corresponds to the one of

a network made of random coils. In addition, the study of the heat capacity shows that strain shifts the helix-coil transition temperature

significantly. Other results are also discussed.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The large deformability and almost complete recover-

ability of elastomers have made them objects of scientific

study for several decades. As in the first experiments of

Gough and Joule [1,2] testing has generally involved the

measurement of mechanical stress corresponding to some

sort of strain, most often uniaxial extension or compression.

Additional information relating mechanical properties to

molecular structure has been obtained from a variety of

experimental techniques including swelling experiments,

NMR, SAXS, SANS and others [3].

Experimental studies have shown that elastomers consist

of macromolecular chains, cross-linked into a network, that

can change their conformations in response to stress.

Theories based on this model, described in a recent review

by Erman and Mark [4], simplified the calculations by

making various assumptions. In the earliest theories [2,5,6]

the network strands were treated as perfectly flexible

‘phantom chains’ that passed freely through each other,

interacting only at cross-links. In such networks, the stress

arises from the decrease in the entropy of the network chains

due to the deformation. Interactions between strands were

incorporated into later theories [7].

Computer simulations have generally followed two

different methods in studying elastomers. The more direct

method of modeling the fully-constructed network is

exemplified in the work of Grest and Kremer, and Escobedo

and de Pablo [8,9]. The less direct but more common

method is the Monte Carlo modeling of a single, isolated

chain to obtain the radial distribution function of end-to-end

distance, which is then used in the standard three-chain

model of rubberlike elasticity to find the stress–strain

behavior of the network [2,6]. This method has been

extensively used with synthetic systems [4].

Most of the studies have focused on synthetic elastomers.

However, biopolymers are richer in terms of their

conformational properties; thus, networks made of
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biopolymers, called bioelastomers, can be expected to have

a more interesting stress–strain behavior. The secondary

structures of biopolymers, such as a-helices and b-sheets, as

well as their tertiary structures, can be melted at sufficiently

high temperatures or pulled apart by sufficiently large

strains. These structures would therefore produce significant

temperature- and strain-dependence in the mechanical

properties of networks. The presence of solvent, which

also affects the formation and melting of such structures,

would add a further dimension to the behavior of swelled

networks.

In order to take full advantage of the potential of novel

bioelastomers, much work remains to be done. Indeed, there

are very few studies of bioelastomers such as elastin and

resilin [4,10]. In general, the investigation of biopolymer

mechanics has largely been restricted to single-chain

elasticity experiments. These have been greatly encouraged

by the recent development of single molecule force

spectroscopy (SMFS) which has been applied to RNA and

DNA, the polysaccharides dextran and xanthan, the muscle

protein Titin, and various other bio- and synthetic polymers

[11].

Researchers are already beginning to build new materials

from biopolymers [12], in the hope of harnessing the endless

variety and complexity of their behavior, which has

motivated the modeling work in this article. Our method

follows the common scheme in which the simulation of a

single chain generates the radial distribution function, which

we use as input in the Three-chain model. We describe the

helical polymer using a model recently developed by us

[13]. The study of helical polymers, which exist in a helical

conformation at low temperature and melt into a random-

coil conformation in response to an increase in temperature

or a change in solvent quality [13,14], will allow us to focus

on the simplest of secondary structures, the a-helix. The

transition described above produces a complex mechanical

behavior that changes at around the transition temperature

of a single chain. We will also compare our simulation

results to the theoretical ones of Kutter and Terentjev for

networks of helix-forming polymers [15].

The Monte Carlo algorithm of Wang and Landau [16] is

used to simulate the homopolypeptide chain. The simulation

results, in conjunction with the three-chain model, will be

used to calculate the stress–strain behavior of the network,

as well as the conformational properties of the constituent

chains for different temperatures and degrees of strain.

This article is organized as follows. In the second section,

we briefly describe our simulation protocol and the three-

chain model. In the third section, we present our results for

the stress–strain and thermo-elastic behavior of the network

and single chain, and rationalize the effect of temperature

and strain on various equilibrium properties, including the

entropy of the network. Finally, we conclude the present

article by summarizing the most important findings of our

work and with the appropriate acknowledgements.

2. Simulation protocol and theoretical model

2.1. Model and simulation methodology

The helical polymer was modeled using the freely

rotating chain model, in which each bead represents an

amino acid residue. The interactions between pairs of beads

were modeled with a hardcore potential energy, and the

tendency toward the helical conformation was modeled

using a criterion based on the concept of torsion of a curve

[13,17]. Each bead that satisfied this criterion was

considered to have a helical conformation and was assigned

a negative enthalpy called C, which stabilizes the helical

conformation. Otherwise, the bead was considered to have a

random coil conformation, which was used as the reference

state. We chose CZK1300 K, so that the helix-coil

transition temperature is close to 300 K. These concepts

were implemented in a Monte Carlo simulation based on the

Wang–Landau algorithm [16]. The outcome of this

procedure is the density of states, which we used to

compute the free energy and radial distribution function of

the polymer [17]. The latter is the input required by the

three-chain model of rubberlike elasticity. More details

about the simulation protocol and model employed can be

found in Ref. [17].

2.2. The three-chain model

The three-chain model assumes that inter-chain inter-

actions are independent of deformation and averages the

free energies of three chains oriented in three orthogonal

orientations, which are deformed in the affine limit at

constant volume. The macroscopic deformations of the

network are liZLi/Li0, where Li and Li0 indicate the

deformed and undeformed dimensions of the network in

the ith direction, respectively. For uniaxial extension the

conservation of volume implies that lxZl,lyZlzZlK1/2.

Thus, the total free energy of a network made of f chains per

unit volume relative to the unstrained state is given by the

equation

Dfnet Z f
f ðR0lÞ

3
C

2f ðR0lK1=2Þ

3
Kf ðR0Þ

� �
(1)

R0 is the average end-to-end distance of a chain in the

undeformed state and f(x) is the free energy (in units of

Boltzmann’s constant, kB) of a single chain with end-to-end

distance x. f(x) is obtained from f(x)ZDf(x)CF(T) where

F(T) is the free energy of a chain, independent of x [13] and

Df(x) is the free energy (relative to the free chain) of a chain

with end-to-end distance equal to x. The latter is given by

Df(x)ZKT ln(W(x)), where W(x) is the probability distri-

bution of the end-to-end distance obtained from the Monte

Carlo simulation. Differentiating Eq. (1) with respect to l at

constant temperature gives the nominal stress of the network
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