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a b s t r a c t

Common efficient schemes for the incompressible Navier–Stokes equations, such as projec-
tion or fractional step methods, have limited temporal accuracy as a result of matrix split-
ting errors, or introduce errors near the domain boundaries (which destroy uniform
convergence to the solution). In this paper we recast the incompressible (constant density)
Navier–Stokes equations (with the velocity prescribed at the boundary) as an equivalent
system, for the primary variables velocity and pressure. equation for the pressure. The
key difference from the usual approaches occurs at the boundaries, where we use boundary
conditions that unequivocally allow the pressure to be recovered from knowledge of the
velocity at any fixed time. This avoids the common difficulty of an, apparently, over-deter-
mined Poisson problem. Since in this alternative formulation the pressure can be accu-
rately and efficiently recovered from the velocity, the recast equations are ideal for
numerical marching methods. The new system can be discretized using a variety of meth-
ods, including semi-implicit treatments of viscosity, and in principle to any desired order of
accuracy. In this work we illustrate the approach with a 2-D second order finite difference
scheme on a Cartesian grid, and devise an algorithm to solve the equations on domains
with curved (non-conforming) boundaries, including a case with a non-trivial topology
(a circular obstruction inside the domain). This algorithm achieves second order accuracy
in the L1 norm, for both the velocity and the pressure. The scheme has a natural extension
to 3-D.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

A critical issue in the numerical solution of the incompressible Navier–Stokes equations is the question of how to imple-
ment the incompressibility constraint. Equivalently, how to recover the pressure from the flow velocity, given the fact that
the equations do not provide any boundary condition for the pressure. This has been an area of intense research, ever since
the pioneering MAC scheme [15] of Harlow and Welch in 1965. Of course, one can avoid the problem by simultaneously dis-
cretizing the momentum and the divergence free equations, as in the difference scheme proposed by Krzywicki and Ladyz-
henskaya [26], which can be shown to converge – while avoiding the need for any pressure boundary conditions. Approaches
such as these, however, do not lead to efficient schemes.

Generally the dilemma has been that of a trade-off between efficiency, and accuracy of the computed solution near the
boundary. However, many applications require both efficiency, and accuracy. For example, to calculate fluid solid
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interactions, both the pressure and gradients of the velocity are needed at the solid walls, as they appear in the components
of the stress tensor. Furthermore, these objectives must be achievable for ‘‘arbitrary’’ geometries, not just simple ones with
symmetries that can be exploited. Unfortunately, these requirements are not something that current algorithms are gener-
ally well suited for, as the brief review below is intended to show.1 However, we believe that algorithms based on a pressure
Poisson equation (PPE) reformulation of the Navier–Stokes equations – reviewed towards the end of this introduction – offer a
path out of the dilemma. The work presented in this paper is, we hope, a contribution in this direction.

Projection methods are very popular in practice because they are efficient. They achieve this efficiency by (i) interpreting
the pressure as effecting a projection of the flow velocity evolution into the set of incompressible fields. That is, write the
equations in the form ut ¼ PðlDu� ðu � rÞuþ fÞ, where P is the appropriate projection operator, l is the kinematic viscos-
ity, u is the flow velocity vector, and f is the vector of applied body forces. (ii) Directly evolving the flow velocity. The ques-
tion is then how to compute P.

In their original formulation by Chorin [6] and Temam [45], the projection method was formulated as a time splitting
scheme in which: First an intermediate velocity is computed, ignoring incompressibility. Second, this velocity is projected
onto the space of incompressible vector fields – by solving a Poisson equation for pressure. Unfortunately this process intro-
duces numerical boundary layers into the solution, which can be ameliorated (but not completely suppressed) for simple
geometries – e.g. ones for which a staggered grid approach can be implemented [7].

The development of second order projection methods [2,22,24,32,47] provided greater control over the numerical boundary
layers and accuracy in the pressure [4]. These are the most popular schemes used in practice. However, particularly for mod-
erate or low Reynolds numbers, the effects of the numerical boundary layers can still be problematic [13]. Non-conforming
boundaries add an extra layer of difficulty. The search for means to better control these numerical artifacts is an active area
of research.

The numerical boundary layers in projection methods reflect in the known convergence results for them (e.g. [37,39,42]).
Convergence is stated only in terms of integral norms, with the main difficulties near the boundary. There point-wise con-
vergence (and even less convergence of the flow velocity gradient) cannot be guaranteed – even if the solution is known to be
smooth. Hence the accurate calculation of wall stresses with these methods is problematic. Guermond et al. [13] provide
further details on convergence results, as well as an extensive review of projection methods and the improved pressure-cor-
rection schemes.

Two other methods for solving the Navier–Stokes equations are the immersed boundary [28,30,34,35,44], and the vortex-
streamfunction [3,5,31] methods. These also decouple the calculation of the velocity and of the pressure. The immersed
boundary method does so by introducing Dirac forces to replace the domain walls, which makes obtaining high order imple-
mentation of the boundary conditions difficult. The vortex-streamfunction formulation decouples the equations, but has
dimensional limitations. An interesting variation of the vortex-streamfunction approach, using only local boundary condi-
tions, is presented in reference [14].

Closely related to the immersed boundary methods are the penalty (alternatively: fictitious domain or domain embedding)
methods – e.g. see [1,9,23]. These methods, effectively, replace solid walls in the fluid by a porous media with a small poros-
ity 0 < g� 1. In the limit g ? 0, this yields no slip and no flow-through at the solid walls. Two important advantages of this
approach are that complicated domains are easy to implement, and that the total fluid-solid force can be computed using a
volume integral, rather than an integral over the boundary of the solid. Unfortunately, the parameter g introduces

ffiffiffigp bound-
ary layers which make convergence slow and high accuracy computations expensive, since g cannot be selected indepen-
dently of the numerical grid size.

Finally, we mention the algorithms based on a pressure Poisson equation (PPE) reformulation of the Navier–Stokes equations
[16–18,29,12,20,21,25,38,40,41], which is the class of methods within which the work presented in this paper falls. In this
approach the incompressibility constraint for the flow velocity is replaced by a Poisson2 equation for the pressure. This then
allows an extra boundary condition – which must be selected so that, in fact, incompressibility is maintained by the resulting
system. This strategy was first proposed by Gresho and Sani [12], who pointed out that addingr � u = 0 as a boundary condition
yields a system of equations that is equivalent to the Navier–Stokes equations. Unfortunately, their particular PPE formulation
incorporates no explicit boundary condition that can be used to recover the pressure from the velocity, by solving a Poisson
problem – for a more detailed discussion of this, see Remark 4 in this paper. In [16,17] the issue is resolved at the discrete
numerical level, where they demonstrate high order schemes. For instance [16] demonstrates a fourth-order in space and sec-
ond-order in time implementation using overlapping grids. Subsequent work at the continuum level was later introduced by
Henshaw and Anders Petersson [18] and Johnston and Liu [21]. Recently, work in PPE formulations have led to interesting
improvements and analysis of projection methods [29]. In this paper – in Eqs. (20) and (21) – we present another PPE system,
also equivalent to the Navier–Stokes equations, which allows an explicit recovery of the pressure given the flow velocity. A com-
parison with the one in [21] can be found in Remark 5 in this paper. Subtle issues can arise with semi-implicit approaches (pres-
sure treated explicitly and viscous term implicitly) leading to time step restrictions [36]. In Section 5 we show that semi-
implicit implementations of our scheme do not have time step restrictions of the diffusive type.

1 This is not intended as a thorough review of the field, and we apologize for the many omissions.
2 The choice of the Poisson equation for the pressure is not unique, e.g. see [20].

8620 D. Shirokoff, R.R. Rosales / Journal of Computational Physics 230 (2011) 8619–8646



Download English Version:

https://daneshyari.com/en/article/518998

Download Persian Version:

https://daneshyari.com/article/518998

Daneshyari.com

https://daneshyari.com/en/article/518998
https://daneshyari.com/article/518998
https://daneshyari.com

