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with no inherent spatial structure. This is widely regarded as an obstacle to the adoption
of unstructured mesh numerical modelling in this field. In this paper, we describe an algo-
rithm by which one can exactly compute such directional integrals on arbitrarily unstruc-
tured meshes. This is achieved via the solution of a problem of computational geometry,
constructing the supermesh of two meshes. We demonstrate the utility of this approach

Keywords:
Unstructured mesh
Finite element
Galerkin projection

Supermesh by applying it to a classical geophysical fluid dynamics system: the thermally driven rotat-
Vertical integration ing annulus. This addresses an important objection to the more widespread use of unstruc-
Zonal integration tured mesh modelling.

Azimuthal integration © 2012 Elsevier Inc. All rights reserved.

1. Introduction

Much scientific computing involves the approximate solution of a system of partial differential equations describing a
physical problem of interest. These computations often rely on a discretisation of the geometry into a mesh upon which
the approximation may be computed. There are two kinds of meshes: structured and unstructured. A structured mesh is
a mesh for which nodal neighbourhood relationships do not need to be explicitly stored - i.e. simple nodal neighbourhood
relationships exist for all nodes in the mesh. This is usually achieved by imposing that (quote) “all interior mesh nodes have
an equal number of adjacent elements” [22]. An unstructured mesh is one which is not structured. As generating a structured
mesh imposes additional topological constraints over generating an unstructured mesh, unstructured meshing is signifi-
cantly easier, and is better suited to complex geometries [28] and mesh adaptivity techniques [21]. One can also generalise
the concept of structure in a mesh: for example, it is possible to generate meshes that are horizontally unstructured, but are
structured in the vertical direction so that all vertices are vertically aligned. Such meshes are often used in unstructured
ocean modelling (e.g. [1,3,10,8,29,30]).

Heretofore, one strong criticism of the use of unstructured meshes in solving partial differential equations is the difficulty
of computing relevant diagnostics of the simulation [2,27]. Typically, the analyst is not interested in the overall picture of the
prognostic variables, but some diagnostic function of them: often such diagnostics are trivial to compute on meshes with a
particular structure, but difficult to compute on general unstructured meshes. For example, it is often highly desirable to
compute directional integrals of the prognostic quantities. In an ocean modelling context, vertical averaging is key to the
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determination of advective transports, as a proxy for measurements of upwelling or downwelling, and for computing depth-
integrated stream functions. If the mesh is vertically structured, this computation is easy; if no vertical structure exists, such
as in the fully unstructured ocean model presented by Pain et al. [23] and Piggott et al. [26], then this computation is very
difficult.

One may choose to interpolate a model solution onto a mesh with an appropriate mesh structure for directional integrals.
For example, in order to compute a vertical average, one may simply interpolate from the model solution mesh onto a ver-
tically structured mesh. However, it is not clear that the interpolation errors introduced by such a procedure need be small.
Indeed, in a simulation in which dynamic mesh adaptivity is applied, it is possible that small-scale features, resolved by the
model, will be entirely missed by an interpolation procedure, and hence be absent from the model diagnostics. Significant
effort may be invested in choosing the simulation mesh, and it is troubling if this is discarded in order to compute offline
diagnostics. One may choose an intermediate structured diagnostic mesh to be of higher resolution in order to mitigate this
problem. However, in a complex three-dimensional simulation, it may not be clear what resolution is required in order for
accurate diagnostics to be obtained. At the very least, it is desirable for the error introduced to be quantifiable.

In this paper, we apply a technique of computational geometry to the computation of difficult directional integrals on
unstructured meshes. The concept of a supermesh of two meshes was introduced in George and Borouchaki [9], and the first
general algorithm for its efficient computation for arbitrarily unrelated meshes was given in Farrell and Maddison [6]
(henceforth FM11). The supermesh is the mesh of the intersections of the elements of the input meshes (Fig. 1). The Galerkin
projection of prognostic fields, via supermesh construction, was tested for applications in dynamic mesh adaptive ocean
modelling in Hiester et al. [12], and was used to develop a geostrophic balance preserving interpolant in Maddison et al. [18].

In this paper, we apply supermeshing in a novel way to compute difficult diagnostics of quantities on unstructured
meshes. The general strategy is to construct the supermesh of two input meshes: the unstructured mesh upon which our
differential equation has been solved, and a mesh which has whatever structure that makes the computation of the relevant
diagnostic easy. We then observe that in many cases the supermesh of the two inherits this particular structure, making the
computation of the diagnostic straightforward on the supermesh. Furthermore, since the supermesh provides a function
superspace of the two input meshes [5], interpolation from either unstructured mesh to the supermesh is lossless (subject
to roundoff), provided basis functions are chosen on the supermesh that form a superspace for the function spaces defined on
each of the input meshes (see Farrell [5] for a discussion). Therefore, the model output is interpolated losslessly onto the
supermesh, where the diagnostic may be easily computed (and exactly computed, subject to roundoff). Essentially, the
supermeshing procedure produces a new mesh, on which the diagnostic can be computed exactly. All of this is performed
with a local implementation of supermesh construction: the entire supermesh is never held in memory all at once, only
small parts at a time.

For the applications described in this paper the supermesh is used to perform the Galerkin projection of directionally
averaged equations. The supermesh is used to compute inner products between basis functions defined on each of two input
meshes. Note that, because of this very specific purpose, questions of mesh quality are generally irrelevant: no equations are
solved on the supermesh itself. Rather, supermeshing is a tool which is used here to compute certain integrals accurately.
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Fig. 1. (a, b) Two triangular meshes. (c) A triangular supermesh of (a) and (b), coloured to show the elements of (a). (d) The same supermesh of (a) and (b),
coloured to show the elements of (b).
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