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a b s t r a c t

In this paper, we describe a new class of fast solvers for separable elliptic partial differential
equations in cylindrical coordinates (r,h,z) with free-space radiation conditions. By com-
bining integral equation methods in the radial variable r with Fourier methods in h and
z, we show that high-order accuracy can be achieved in both the governing potential
and its derivatives. A weak singularity arises in the Fourier transform with respect to z that
is handled with special purpose quadratures. We show how these solvers can be applied to
the evaluation of the Coulomb collision operator in kinetic models of ionized gases.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

A variety of problems in computational physics require the solution of the Poisson and biharmonic equations in cylindri-
cal coordinate systems, particularly when the source distribution (the right-hand side) is axisymmetric or involves only a
few azimuthal modes. The present paper was motivated by the need to compute the Coulomb collision operator C(fa, fb)
in kinetic simulations of the Boltzmann–Fokker–Planck equation [4,5,31–33]:

@tfa þ v � rfa þ
ea

ma
ðE þ v � BÞ � @v fa ¼

X
b

ðfa; fbÞ: ð1Þ

Here, fa(x,v, t) denotes the state of an ionized gas for plasma species a and the index b runs over all species present. In the
Fokker–Planck–Landau formalism [26],

Cðfa; fbÞ ¼ cab@v �
Z

Sðv � v 0Þ @v faðvÞ
ma

fbðv 0Þ � faðvÞ
@v 0 fbðv 0Þ

mb

� �
dv 0 ð2Þ

where

Sðv � v 0Þij ¼ dij
1

jv � v 0j �
v i � v 0i
� �

v j � v 0j
� �

jv � v 0j3
: ð3Þ

An alternative representation makes use of the Rosenbluth potentials [32]:

Cðfa; fbÞ ¼
cab

ma
@v � @v � ðfa@v@vGbÞ � 2 1þma

mb

� �
fa@vHb

� 	
ð4Þ
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where

HbðvÞ ¼
Z

1
jv � v 0j fbðv 0Þdv 0 or DHb ¼ �4pfb ð5Þ

and

GbðvÞ ¼
Z
jv � v 0jfbðv 0Þdv 0 or D2Gb ¼ �8pfb ð6Þ

Note that four derivatives of Gb are required in (4), while Gb itself satisfies the inhomogeneous biharmonic Eq. (6). Thus, di-
rect discretization of the partial differential equation, followed by evaluation of the collision operator via (4) would require
eight steps of numerical differentiation, with significant loss of accuracy.

It is natural, therefore, to consider alternative methods with the dual goals of achieving high order accuracy and minimiz-
ing the condition number of the solution process. Because of the design of magnetic confinement devices for plasmas, it is
also important to be able to construct numerical methods in cylindrical coordinate systems, since the distribution functions
fb(v) are often axisymmetric or involve only a few azimuthal modes.

There is, of course, a substantial literature on computing Coulomb collisions and on solving elliptic partial differential
equations in cylindrical coordinates. We refer the reader to [5,7,11,19,22,24,28,29,31–33] for some methods in current
use in plasma physics. For a discussion of relativistic effects, see [6]. Most closely related to our approach are the methods
of [15,30 and 20,23,24,32]. The first two are fast and achieve high order (‘‘spectral’’) accuracy, but use Fourier methods in
Cartesian coordinates and do not address the axisymmetric (or low azimuthal mode) case. The latter rely on separation of
variables in spherical coordinates, for which the axisymmetric case leads naturally to a representation involving Legendre
polynomials and the general case to a representation involving associated Legendre functions.

In the numerical analysis literature, most solvers based on cylindrical coordinates tend to concern themselves with peri-
odic (in z) or finite domain boundary conditions rather than free-space boundary conditions (see, for example [9,25]). Here,
we develop a method for computing the Rosenbluth potentials using separation of variables and a mix of integral equation
and Fourier analysis techniques. We show that free-space (radiation) conditions can be imposed in a straightforward manner
and that high order accuracy can be achieved in all derivatives with minimal loss of precision. The solver requires O(NlogN)
work, where N is the number of grid points used to sample the distribution function.

Finally, we should make a remark about notation. The collision operator and the Rosenbluth potentials in (5), (6) are de-
fined in velocity variables, for which we will use the standard cylindrical coordinates (r,h,z) for v. In the context of plasma
physics, r = jv\j, where jv\j is the magnitude of the component of the velocity perpendicular to the magnetic field, h is the
gyrophase angle, and z = vj is the component of the velocity field parallel to the magnetic field. The problem is purely axi-
symmetric when the velocity field is independent of the gyrophase angle.

One disadvantage of our solver is that we can be adaptive in the r direction, but not in the z or h directions, since we use
spectral discretizations in the latter variables. For fully adaptive three-dimensional calculations, one could employ fast mul-
tipole-accelerated integral equation solvers, as described in [14,27]. These methods directly compute the convolution of the
data fb(v) with the free-space Green’s function. In the axisymmetric case, one could use an axisymmetric version of the fast
multipole method [34]. The constant, however, is larger for these schemes than for methods based on separation of variables,
and we limit our attention to methods that rely on a tensor product mesh in r, h and z, which is adequate for most current
simulations of the Boltzmann–Fokker–Planck Eq. (1).

2. The Poisson equation in cylindrical coordinates

In order to compute the Rosenbluth potential Hb, we must solve the Poisson equation in free space

DuðvÞ ¼ f ðvÞ:

In cylindrical coordinates v = (r,h,z), we have

urrðr; h; zÞ þ
1
r

urðr; h; zÞ þ
1
r2 uhhðr; h; zÞ þ uzzðr; h; zÞ ¼ f ðr; h; zÞ; ð7Þ

and we assume that f is identically zero outside the region

X ¼ fðr; h; zÞ : 0 6 r 6 R; �A 6 z 6 A; 0 6 h 6 2pg:

Since u and f are periodic in h, we represent them as Fourier series:

uðr; h; zÞ ¼
X1

n¼�1
uðnÞðr; zÞeinh ð8Þ

f ðr; h; zÞ ¼
X1

n¼�1
f ðnÞðr; zÞeinh ð9Þ
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