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We develop weighted essentially non-oscillatory reconstruction techniques based on 
Hermite interpolation both for semi-Lagrangian and finite difference methods. We apply 
these methods to transport equations in the context of plasma physics and the numerical 
simulation of turbulence phenomena. On the one hand the non-conservative semi-
Lagrangian methods with high order reconstructions are particularly efficient and accurate 
in linear phase of simulations before the appearance of small structures. However in the 
nonlinear phase, the lack of conservations may generate inaccurate numerical simulations. 
At contrast, the conservative finite difference methods are more stable in nonlinear phase 
and the Hermite WENO reconstruction avoids spurious oscillations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Turbulent magnetized plasmas are encountered in a wide variety of astrophysical situations like the solar corona, accre-
tion disks, etc., but also in magnetic fusion devices such as tokamaks. In practice, the study of such plasmas requires solving 
the Maxwell equations coupled to the computation of the plasma response. Different ways are possible to compute this 
response: the fluid or the kinetic description. Unfortunately, the fluid approach seems to be insufficient when one wants to 
study the behavior of zonal flow, the interaction between waves and particles or the occurrence of turbulence in magnetized 
plasmas, for example. Most of the time these plasmas are weakly collisional, and then they require a kinetic description rep-
resented by the Vlasov–Maxwell system. The numerical simulation of the full Vlasov equation involves the discretization of 
the six-dimensional phase space (x, v) ∈ R3 × R3, which is still a challenging issue. In the context of strongly magnetized 
plasmas however, the motion of the particles is particular since it is confined around the magnetic field lines; the frequency 
of this cyclotron motion is faster than the frequencies of interest. Therefore, the physical system can be reduced to four or 
five dimensions by averaging over the gyroradius of charged particles (see a review in [1,14]).

Development of accurate and stable numerical techniques for plasma turbulence (4D drift kinetic, 5D gyrokinetic and 6D 
kinetic models) is one of our long-term objectives. Of course, there are already a large variety of numerical methods based 
on direct numerical simulation techniques. The Vlasov equation is discretized in phase space using either semi-Lagrangian 
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[8,9,28,29], finite element [17], finite difference [30] or discontinuous Galerkin [6,19] schemes. Most of these methods are 
based on a time splitting discretization which is particularly efficient for classical Vlasov–Poisson or Vlasov–Maxwell sys-
tems since the characteristic curves corresponding to the split operator simply become straight lines and can be solved 
exactly. Therefore, the numerical error is only due to the splitting in time and the phase space discretization of the dis-
tribution function. Furthermore for such time splitting schemes, the semi-Lagrangian methods on Cartesian grids coupled 
with Lagrange, Hermite or cubic spline interpolation techniques are conservative [3,9]. Hence, these methods are currently 
used and have proven their efficiency for various applications and in this context they are often observed to be less dissi-
pative than classical finite volume or finite difference schemes. However, for more elaborated kinetic equations like the 4D 
drift kinetic [15] or 5D gyrokinetic [16] equations, or even the two-dimensional guiding center model [29], time splitting 
techniques cannot necessarily be applied. Thus characteristic curves are more sophisticated and required a specific time 
discretization. For instance, in [15,16] several numerical solvers have been developed using an Eulerian formulation for 
gyro-kinetic models. However, spurious oscillations often appear in the nonlinear phase when small structures occur and it 
is difficult to distinguish physical and numerical oscillations. Moreover, for these models semi-Lagrangian methods are no 
more conservative, hence the long time behavior of the numerical solution may become unsuitable.

For this purpose, we want to develop a class of numerical methods based on the Hermite interpolation which is known 
to be less dissipative than Lagrange interpolation [9], together with a weighted essentially non-oscillatory (WENO) recon-
struction applied to semi-Lagrangian and finite difference methods. Actually, Hermite interpolation with WENO schemes 
was already studied in [25] in the context of discontinuous Galerkin methods with slope limiters. A system of equations 
for the unknown function and its first derivative are evolved in time and used in the reconstruction. Moreover, a similar 
technique, called CIP (Cubic Interpolation Propagation), has also been proposed for transport equations in plasma physics 
applications [23], but the computational cost is strongly increased since the unknown and all the derivatives are advected 
in phase space. In [9], a semi-Lagrangian method with Hermite interpolation has been proposed and shown to be efficient 
and less dissipative than Lagrangian interpolation. In this method, the first derivatives are approximated by a fourth-order
centered finite difference formula.

Here, we also apply a similar pseudo-Hermite reconstruction [9] and meanwhile introduce an appropriate WENO recon-
struction to control spurious oscillation leading to nonlinear schemes. We develop third and fifth order methods and apply 
them to semi-Lagrangian (non-conservative schemes) and conservative finite difference methods. Our numerical results will 
be compared to the usual semi-Lagrangian method with cubic spline interpolation [29] and the classical fifth-order WENO 
finite difference scheme [21].

The paper is organized as follows. We first present the Vlasov equation and related models which will be investigated 
numerically. Then in Section 3, the semi-Lagrangian method is proposed with high order Hermite interpolation with a 
WENO reconstruction to control spurious oscillations. In Section 4, conservative finite difference schemes with Hermite 
WENO reconstructions are detailed. In Section 5, a discussion of approximation of first derivatives is presented. Then the 
one-dimensional free transport equation with oscillatory initial data is investigated to compare our schemes with classical 
ones (semi-Lagrangian with cubic spline interpolation and conservative finite difference schemes with WENO reconstruc-
tion). Finally we perform numerical simulations on the simplified paraxial Vlasov–Poisson model and on the guiding center 
model for highly magnetized plasma in two dimensions.

2. The Vlasov equation and related models

The evolution of the density of particles f (t, x, v) in the phase space (x, v) ∈ Rd ×Rd , d = 1, .., 3, is given by the Vlasov 
equation,

∂ f

∂t
+ v · ∇x f + F(t,x,v) · ∇v f = 0, (2.1)

where the force field F (t, x, v) is coupled with the distribution function f giving a nonlinear system. We mention the well 
known Vlasov–Poisson (VP) model describing the evolution of particles under the effects of self-consistent electro-magnetic 
fields. We define the charge density ρ(t, x) by

ρ(t,x) = q

∫
Rd

f (t,x,v)dv, (2.2)

where q is the single charge. The force field is given for the Vlasov–Poisson model by

F(t,x,v) = q

m
E(t,x), E(t,x) = −∇xφ(t,x), −�xφ = ρ

ε0
, (2.3)

where m represents the mass of one particle. These equations and related reduced equations, such as 4D drift-kinetic 
equation [18], are frequently used to describe plasma turbulence in a tokamak core.
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