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Dendritic morphologies are by far the most frequently observed structures during solidification of metals and alloys. The 
simulation of dendritic solidification, however, places strong requirements on the applied models, as the formation of the 
complex morphology is the result of the weakly anisotropic interfacial energy of the solid–liquid interface. The difference in 
equilibrium solute concentration along the interface is usually much smaller than the difference between the concentration 
at the interface and the liquid bulk. This results in small differences in the solute fluxes to or from the interface, which need 
to be accounted for with a sufficiently high accuracy to reproduce dendritic structures by a spatially resolved simulation 
method.

Common simulation models for dendritic solidification (e.g. Cellular Automaton or Phase Field models) usually operate 
on Cartesian grids which may affect the simulation results by introducing an anisotropic error. In Phase Field models it is 
attempted to reduce this error by choosing fine grids, whereas in Cellular Automata special modifications for the reduction 
of the anisotropy error are usually incorporated into the model (e.g. [1–4]). Another approach (as demonstrated by Schön-
fisch for Cellular Automata [5]) is the adoption of stochastic, quasi-isotropic grids that can be expected to introduce no 
direction-dependent error at all. This approach has been taken up in a recent publication [6] by the present authors in the 
form of a Meshless Front Tracking (MFT) method.

In the MFT method the spatial domain is discretized by nodes on random positions throughout the domain, with the 
constraint of a minimum pairwise distance between all nodes. These nodes do not have any connectivity as would be 
required for e.g. FEM methods. The diffusion equation is instead discretized by the meshless Diffuse Approximation Method 
(DAM) [7,8], with additional stability handling [9] for the reduction of numerical noise that is introduced by the use of an 
irregular grid. The DAM represents the solute concentration field by a weighted Least Squares fit of the nodes’ concentration 
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Fig. 1. Neighborhood of a grid node (large square) near the interface, consisting of nodes on the same side of the interface (filled squares) and all tracking 
particles (dots) between all nodes inside the neighborhood. Only filled objects participate in the interpolation calculations at this node.

using a complete monomial base of second order. The derivatives required for the solution of the diffusion equation are 
taken directly from the fit. The diffusion equation is integrated by an explicit time-forward scheme.

The interface is represented by a Front Tracking (FT) method using moving particles. These particles, contrary to common 
FT methods, are neither ordered nor connected. Each of them is instead linked to two grid nodes. This approach allows for 
a straightforward test for the location of the interface with respect to a given grid node and also simplifies the bookkeeping 
of particles which are close to each other. The interface geometry is determined by a two-step algorithm: in the first step, 
the interface normal is calculated by a weighted Total Least Squares fit [6,10]. The interface curvature is calculated in the 
second step by a weighted Least Squares fit for a parabola. This fit is conducted in the coordinate system of the interface 
normal. The local velocity of the interface is calculated by the mass balance at the position of the particles, which are then 
moved accordingly. The implemented particle tracking method does not yet include explicit algorithms for topology changes.

To attain the accuracy required for the simulation of dendritic solidification, two minor modifications were introduced 
to the model of Ref. [6]: (1) The neighborhood of a grid node, which contains all elements that contribute to the DAM, is 
set to include a larger selection of the particles. Although in Ref. [6] only particles belonging to the node itself contributed 
to the DAM, in the present implementation particles between all pairs of nodes which belong to the nodes’ neighborhood 
are included (Fig. 1). (2) The weighting for all Least Squares fits both of the DAM and of the interface geometry calculation 
is modified to depend inversely on the actual object density. This density is calculated as a sum of contributions from all 
objects (particles and/or nodes) participating in the respective calculation. All contributions are Gaussian functions of their 
distance to the node or particle where the density is calculated.

Equiaxed solidification in an undercooled binary alloy melt is simulated here as a proof of concept for the ability of the 
present model to simulate anisotropic, unstable interface problems. Solute diffusion in the solid and liquid bulk is described 
by Fick’s second law. The interface velocity, v , is described by the mass balance that depends on the solute fluxes, js,l , on 
either side of the interface [11]:

v = 1

CΓ
l − CΓ

s
( js + jl) (1)

The fluxes are calculated by Fick’s first law. The interface concentrations, CΓ
s,l , are equal to the equilibrium concentration 

according to the phase diagram, including capillarity and anisotropy effects. The Al–Cu system with linearized solidus and 
liquidus lines is chosen as an example for the simulation. Its parameters are as follows [11]: melting temperature of pure 
aluminum Tm = 933.47 K; liquidus slope m = −2.6 K/wt%; partition coefficient k = 0.14. The diffusion coefficients in solid 
and liquid are Ds = 3.0 · 10−13 m2/s and Dl = 3.0 · 10−9 m2/s, respectively. The capillarity undercooling, �Tc , of the solid–
liquid interface is described in dependence of its normal, �n, and curvature, κ , by

�Tc = γ (�n)κ (2)

with γ representing the sum of the interfacial energy and its stiffness (i.e., its second derivative with respect to the normal 
angle). In two dimensions it is described by the interface energy-density modulus, γ 0, and an anisotropy parameter, ε . 
Choosing fourfold symmetry, γ is given by

γ = γ 0[1 − 15ε cos
(
4[Θ0 − arccos nx]

)]
, (3)

with Θ0 describing the direction of the maximum of the anisotropic interfacial energy with respect to the coordinate system 
in which �n is noted. The anisotropy parameter ε is chosen to be 0.01.

The simulation domain is a square with a side length of 100 μm and periodic boundaries. It consists of 2.7 million nodes 
with a minimum pairwise distance of 0.05 μm and the corresponding radius of the circular neighborhood used for the Least 
Squares calculations of 0.25 μm. The time step of the simulation is 0.2 μs.

A circular seed with a diameter of 1.0 μm is placed in the melt with a Cu concentration of 2.1 wt%, the equilibrium 
concentration of a plane front at 928.0 K. At the start of the simulation, the domain temperature is set to 920.0 K. A smooth 
initial concentration gradient is introduced between the seed and the bulk liquid to ensure the quality of the meshless 
interpolation of the concentration field. The length scale of this transition is chosen as 1.25 μm, which is on the order of 
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