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a b s t r a c t

In this paper, an efficient numerical scheme is designed for a phase field model for the
moving contact line problem, which consists of a coupled system of the Cahn–Hilliard
and Navier–Stokes equations with the generalized Navier boundary condition [1,2,4].
The nonlinear version of the scheme is semi-implicit in time and is based on a convex split-
ting of the Cahn–Hilliard free energy (including the boundary energy) together with a pro-
jection method for the Navier–Stokes equations. We show, under certain conditions, the
scheme has the total energy decaying property and is unconditionally stable. The linearized
scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests
are carried out to verify the accuracy and stability of the scheme. The behavior of the solu-
tion near the contact line is examined. It is verified that, when the interface intersects with
the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has
the better accuracy for pressure.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Moving contact line problem, where the fluid–fluid interface intersects the solid wall, is a classical problem that occurs in
many physical phenomena. It is well known that classical hydrodynamical models with no-slip boundary condition leads to
nonphysical singularity in the vicinity of the contact line [3]. The recent discovery of the generalized Navier boundary con-
dition (GNBC) [1,2] has resolved this issue with respect to the immiscible flow over flat surfaces. A phase field model with
generalized Navier boundary condition is proposed in [1] which involves a coupled system of the Cahn–Hilliard equation and
the Navier–Stokes equations. It is shown that the numerical results based on the GNBC can reproduce quantitatively the re-
sults from the MD simulation. This indicates that the new model can accurately describe the behavior near the contact line.

There have been many work on developing efficient numerical schemes for the Cahn–Hilliard (or Allen–Cahn) Navier–
Stokes system for two-phase flow [13–15,17,18,24]. However, most of the work were on models for problems where the
interface does not intersect with the boundary. The main difficulty in those problems comes from the high (fourth) order
derivatives and strong nonlinearity in the Cahn–Hilliard equation which introduces a strong stability constraint for the time
step. Extra complexity is introduced in the moving contact line model due to the complicated generalized Navier boundary
condition. For the Navier–Stokes equations, a class of efficient solvers of projection type have been developed in recent years
(see the review article [22]). There are also a lot of work on the numerical methods for the Cahn–Hilliard equation and its
non-conservative, lower order version, the Allen–Cahn equation [5–12]. In particular, attention has been paid to how to con-
struct stable, energy decreasing scheme. An innovative idea, proposed by Eyre [9,10], leads to an unconditionally gradient
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stable, uniquely solvable one-step scheme based on a convex splitting of total free energy functional into contractive and
expansive parts. The idea has also been extended to solve other systems [8,16,19,20].

In this paper, we develop an unconditionally gradient stable scheme for the coupled Cahn–Hilliard Navier–Stokes
equations with the generalized Navier boundary condition. The scheme is based on a convex splitting of both the bulk free
energy functional and the surface energy. We show, under certain condition, the scheme has the total energy decaying prop-
erty and is unconditionally stable. Numerical tests are carried out to verify the stability and accuracy of the scheme. We also
compared the performances of two types of Navier–Stokes solvers. It is verified that, when the interface intersects with the
boundary, the consistent splitting scheme with accurate boundary condition [21,22] has the better accuracy for pressure.

The rest of the paper is organized as follows. In Section 2, we briefly describe the phase field model with GNBC. In
Section 3, we derive the energy law for the PDE system. The Numerical scheme and discrete energy law are derived in
Section 4. Numerical tests are performed and the results are analyzed in Section 5. The paper concludes in Section 6 with
a few remarks.

2. The phase field model with the generalized Navier boundary condition

A phase field model with generalized Navier boundary condition is proposed in [1] to model the moving contact line
problem. The system includes a coupled system of Cahn–Hilliard Navier–Stokes equations,

@/
@t
þ v � r/ ¼ MDl ð2:1Þ
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Here p is the pressure, rm = g(rv +rvT) denotes the viscous part of the stress tensor, q, g are the fluid mass density and vis-
cosity, which are assumed to be constant in this paper, qgext is the external body force density, and M is the phenomenolog-
ical mobility coefficient; l = �KD/ � r/ + u/3 is the chemical potential, and lr/ is the capillary force; K, r, u are the
parameters that are related to the interface profile thickness n ¼

ffiffiffiffiffiffiffiffi
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p
, the interfacial tension c ¼ 2
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r2n=3u, and the
two homogeneous equilibrium phases /� ¼ �

ffiffiffiffiffiffiffiffi
r=u

p
(=±1 in our case).

We will consider a two-phase Couette flow confined in a channel as in Fig. 1. To describe the system, Eq. (2.2) is supple-
mented with the generalized Navier boundary condition (GNBC),

bv slip
x ¼ �g@nvx þ Lð/Þ@x/ ð2:4Þ

Here L(/) = K@n/ + @cwf(/)/@/, and cwf ð/Þ ¼ � 1
2 c cos hsurf

s sin p
2 /
� �

; hsurf
s is the static contact angle, b is the slip coefficient. The

velocity field is denoted by v = (vx,vz), where vx is velocity along x direction, vz is velocity along z direction. (n,s) denote nor-
mal and tangential directions to the boundary. In addition, a dynamic boundary condition is imposed on the phase field var-
iable / at the top and bottom boundaries,

@/
@t
þ vx@x/ ¼ �C½Lð/Þ� ð2:5Þ

where C is a (positive) phenomenological parameter, together with the following impermeability conditions,

vz ¼ 0; @nl ¼ 0 ð2:6Þ

To obtain dimensionless equations as in [1], we scale length by some length scale L, / by
ffiffiffiffiffiffiffiffi
r=u

p
(=1, in this paper), velocity

by the wall speed V, time by L/V, and pressure by gV/L. Then the equations become

@/
@t
þ v � r/ ¼ LdDl ð2:7Þ

Fig. 1. Two-phase Couette flow with wall speed uw.
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