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a b s t r a c t

An implicit, second-order space and time discretization scheme together with a parallel
multigrid method involving a strip grid domain partitioning has been developed to solve
fully coupled, nonlinear phase field equations involving solute and heat transport for mul-
tiple solidifying dendrites. The computational algorithm has been shown to be stable and
monotonously convergent, and allowed time marching steps that were 3–4 orders of mag-
nitude larger than those employed in similar explicit approaches, resulting in an increase of
3–4 orders of magnitude in computing efficiency. Full solute and thermal coupling was
achieved for metallic alloys with a realistic, high Lewis number of >104. The parallel mul-
tigrid computing scheme is shown to provide a scalable methodology that allowed the effi-
cient use of distributed supercomputing resource to simulate the evolution of tens of
complex shaped 2D dendrites in a computational domain containing tens or even hundreds
of millions of grid points. The simulations have provided insight into the dynamic interplay
of many growing dendrites in a more realistic fully coupled thermal-solute condition, cap-
turing for the first time fine scale features such as dendrite splitting.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Since the successful demonstration of the phase field (PF) approach for the simulation of dendrite shape during solidifi-
cation by Kobayashi in 1994 [1], the PF method has been developed intensively worldwide for the simulation of pure metal
and alloy dendrite microstructural evolution [2–7]. The PF method employs a diffuse interface concept with a continuous PF
variable / that varies smoothly but steeply across a diffuse interface that represents the separation between solid and liquid
phases and avoids the need for explicit tracking of the physical position of the solid–liquid interface [8]. Generally, the evo-
lution of / is governed by the spatial and temporal distribution of alloy internal energy (specific and latent heat) and the
interface gradient energy, and the introduction of / produces a set of partial differential equations (PDEs) governing the
phase field, solute and temperature. Because temperature and the composition of both liquid and solid phases in an alloy
are linked by thermodynamic considerations, the PDEs are strongly coupled and non-linear, and consequently are difficult
to solve efficiently. Hence, in most of the studies concerning PF based simulations of dendrite evolution during solidification
reported so far simplified version of the PDEs have been used to decouple the thermal and solute fields e.g. dendrite growth
in an isothermal field (without transient heat transfer) [9], at a constant pre-determined cooling rate [10], or under an ap-
plied predefined and fixed thermal gradient [11,12]. Finite difference discretization and an explicit time-marching method
have generally been used to solve the discretized PDEs. Consequently, in order to make the complex, coupled case of alloy
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dendritic solidification tractable, the resulting simulations either omit some of the underlying physics, or predict unrealistic
dendrite morphologies compared with reality. Further serious challenges concern the time-stepping constraint and small
discretization distances required for stability in the explicit method so that computing times become enormous and even
the most powerful supercomputers can calculate dendrite shape evolution for only a few tens of dendrites, making it very
difficult, if not impossible, to simulate microstructures over meaningful volumes of material with a sensible computer bur-
den, and with sufficient underlying physics (linked solute and thermal transport), to be insightful for practical solidification
problems.

To take the coupled thermal-solute effect into account, Karma and Rappel [13,14] and Ramirez et al. [15] have recently
developed a coupled thermal-solute PF model for dilute binary alloys. By introducing a term named the ‘‘anti-trapping’’ cur-
rent to the solute conservation equation, non-equilibrium effects such as interface stretching and surface diffusion effects
arising when the solid and liquid diffusivities are unequal were eliminated, and very good quantitative agreement between
simulation and analytical equations based on the Gibbs–Thomson equation for curvature effects on solid–liquid interfaces
were obtained. However, the required coupling of a thermal field into the solidifying system introduces further computing
complexity due to the multi-scale character of the very large difference between the thermal and solute diffusion rate char-
acterized by the Lewis number i.e. the ratio between the thermal and solute diffusivities, which is typically �104 for metallic
alloys. As a consequence, for the study of fully coupled thermal-solute dendrite growth in metallic alloys, typically only one
quarter or half of a solidifying primary dendrite can be simulated, and even then an artificially low Lewis number of order of
magnitude 101–102 must be assumed [15] in order to reduce computational cost.

In an effort to address more practical Lewis numbers, length and time scales, implicit rather than explicit algorithms have
been developed. Rosam et al. [16,17] presented an adaptive mesh, multigrid algorithm and showed that this approach could
simulate successfully dendrite shape evolution during solidification at a lower computational cost by refining the discretized
grid at the diffuse interface area only. More importantly, due to the inherent high stability of the implicit approach, limits on
the Lewis number were removed. In comparison with the other numerical methods that might be applied to phase field
equations such as the generalized minimal residual (GMRES) or conjugated gradient (CG) [18], a multigrid approach can pro-
vide solutions involving a number of computational operations that are near linearly proportional to the problem scale or
dimension [19].

In summary, the many phase field approaches to the simulation of the way in which dendrite shape evolves during solid-
ification usually suffer from one or more of the following restrictions:

(1) artificially low Lewis number,
(2) very small length and time scales associated with the explicit method,
(3) a decoupling of thermal and solute fields (that are strongly coupled in practice), and
(4) only a few dendrites can be considered and therefore microstructure prediction is non-sensible.

In this paper we present a new numerical approach with dramatic increases in computational efficiency for the phase
field method in order to simulate the evolution of dendritic microstructures, including multiple dendrite growth, impinge-
ment and solute segregation. The approach is a major extension of the multigrid algorithm applied by Rosam et al. [16,17]
but implemented here with a new highly parallelized computing scheme. As a consequence of the improved robustness and
computational efficiency, we then present results for the first time of multiple dendrite growth for realistic Lewis numbers of
�104 corresponding to metallic alloys in a fully coupled thermal-solute field, including secondary dendrite arm stretching
and dendrite impingement.

2. The phase field model

2.1. Governing equations

The coupled thermal-solute PF model for the solidification of dilute binary alloys proposed by Ramirez et al. [15] was
adopted in this study. The governing PDEs are:

@/
@t
¼ �K/

dF
d/

ð1Þ

@c
@t
¼ ~r � Kc

~r dF
dc
�~jat

� �
ð2Þ

@T
@t
¼ ar2T þ L

2cp

@/
@t

ð3Þ

where t is time, /, c, T are phase field, solute concentration (molar), and temperature respectively, K/ and Kc are constants, a
is thermal diffusivity, L is latent heat, and cp is alloy specific heat. F is the system free energy and during the solidification of a
dilute binary alloy is given by [15]:
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