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a b s t r a c t

We present a numerical method for the variable coefficient Poisson equation in three-
dimensional irregular domains and with interfacial discontinuities. The discretization
embeds the domain and interface into a uniform Cartesian grid augmented with virtual
degrees of freedom to provide accurate treatment of jump and boundary conditions. The
matrix associated with the discretization is symmetric positive definite and equal to the
standard 7-point finite difference Poisson stencil away from embedded interfaces and
boundaries. Numerical evidence suggests second order accuracy in the L1-norm. Our
approach improves the treatment of Dirichlet and jump constraints in the recent work of
Bedrossian et al. [1] and introduces innovations necessary in three dimensions. Specifically,
we construct new constraint-based Lagrange multiplier spaces that significantly improve
the conditioning of the associated linear system of equations; we provide a method for
cell-local polyhedral approximation to the zero isocontour surface of a level set needed
for three-dimensional embedding; and we show that the new Lagrange multiplier spaces
naturally lead to a class of easy-to-implement multigrid methods that achieve near optimal
efficiency, as shown by numerical examples. For the specific case of a continuous Poisson
coefficient in interface problems, we provide an expansive treatment of the construction of
a particular solution that satisfies the value jump and flux jump constraints. As in [1], this
is used in a discontinuity removal technique that yields the standard 7-point stencil across
the interface and only requires a modification to the right-hand side of the linear system.
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1. Introduction

Elliptic interface problems such as

�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X n C; ð1Þ
½u� ¼ aðxÞ; x 2 C; ð2Þ
½bru � n̂� ¼ bðxÞ; x 2 C; ð3Þ
u ¼ pðxÞ; x 2 @Xd; ð4Þ
bru � n̂ ¼ qðxÞ; x 2 @Xn; ð5Þ
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have a wide variety of applications in physics and engineering, and naturally arise when two dissimilar materials interact
across a thin interface. Common examples include immiscible, incompressible fluids in contact and phase change problems.
The interface C is generally a co-dimension one closed curve (dimension 2) or surface (dimension 3) that divides the domain
into an interior region X� and an exterior region X+ such that X ¼ X� tXþ t C � Rd (d = 2 or 3, typically). The scalar coef-
ficient field b and the source term f can exhibit discontinuities across C, but have smooth restrictions br, fr to Xr, r 2 {�, +}.
We let n̂ðxÞ denote the outward unit normal, whether to X� at a point x 2 C or to X at a point x 2 oX; and define
½v �ðxÞ :¼ vþðxÞ � v�ðxÞ :¼ lim�!0þv xþ �n̂ðxÞð Þ � lim�!0þv x� �n̂ðxÞð Þ as the jump of the quantity v across the interface C.
The relevant physics generally determine the jumps in the solution (2) and in the flux (3), as well as the boundary conditions
on oX. Unless stated otherwise, we assume the surfaces C, oX are smooth.

Due to irregular geometry of the boundary and/or interface in many physical phenomena, a natural approach to the
numerical approximation is the finite element method (FEM) with unstructured meshes that conform to the geometry of C
and oX [2–9]. However, meshing complex interface geometries can prove difficult and time-consuming when the interface
frequently changes shape, especially in 3 dimensions. Also, many numerical methods, such as geometric multigrid methods,
do not naturally apply to unstructured meshes. These concerns are largely circumvented with the use of embedded (or im-
mersed) methods that approximate solutions to (1)–(3) on Cartesian grids or structured meshes that do not conform to the
interface. Despite advances in this direction, embedded methods that retain higher order accuracy in L1 often are limited to
2 dimensions and introduce relatively difficult linear algebra problems and complex implementations that sometimes re-
quire significant effort to adapt to general applications.

Recently, however, Bedrossian et al. [1] introduced a second order virtual node method for solving the elliptic interface
problem (1)–(5) in 2 dimensions. The discretization presented in [1] is easy to implement and yields a symmetric positive
definite sparse linear system for both interface problems and boundary value problems on irregular domains. In summary,
this virtual node method employs a uniform Cartesian grid with duplicated Cartesian bilinear elements along the interface.
These duplicated elements introduce additional virtual nodes or degrees of freedom to accurately capture the lack of regu-
larity in the solution. The method is variational to define stencils symmetrically, and a different discretization is used
depending on proximity to embedded features, allowing for the retention of the standard 5-point finite difference stencil
away from embedded boundaries and interfaces. Langrange multipliers are used to enforce embedded Dirichlet conditions
(4) and embedded jump conditions (2), and the choice of Lagrange multiplier space admits a symmetric positive definite dis-
cretization. In the special case when b is smooth, a discontinuity removal technique allows the use of the standard 5-point
Poisson stencil even across the embedded interface.

The feature set of this virtual node approach is very powerful. In the present work, we improve many aspects of [1] and
provide key modifications necessary to extend the method to 3 dimensions. Within the context of embedded Dirichlet and
embedded interface discretizations, we present a novel and flexible algorithm to define the discrete Lagrange multiplier
space. This algorithm gives more control on the conditioning of the resulting linear system and specifically addresses
the conditioning issues (see Appendix C) we found in the straightforward extension of [1] to 3 dimensions. We also give
an expanded treatment of the discontinuity removal technique, detailing an algorithm for the construction of a scalar func-
tion satisfying the jump conditions (2) and (3). Specific to the 3-dimensional implementation, we describe an algorithm for
creating a polyhedral representation of cell-local interface/boundary geometry and quadrature rules suitable for these poly-
hedral surfaces. Finally, we present a family of multigrid algorithms that solve (1)–(5) with near-optimal multigrid
efficiency.

The remainder of the paper proceeds as follows. We review existing embedded methods and related multigrid algorithms
in Section 2. Section 3 presents our numerical discretizations for embedded Neumann (Section 3.2), embedded Dirichlet
(Section 3.3), and embedded interface problems (Section 3.4). We outline our new constraint aggregation algorithm as it ap-
plies to our embedded Dirichlet discretization in Section 3.3.2, and detail the special case in embedded interface problems of
smooth b in Section 3.4.1. Section 4 explains the components of our multigrid algorithms for all discretization types. We use
numerical examples to demonstrate the accuracy of our discretization and the performance of our multigrid solvers in Sec-
tion 5, and we conclude with a short summary and discussion in Section 6. We include an appendix with some additional
miscellaneous details.

2. Existing methods

The Immersed Interfaced Method (IIM) is perhaps the most popular finite difference method for approximating (1)–(3) to
second order accuracy. LeVeque and Li first proposed the IIM for approximating elliptic interface problems in [10] and the
term now applies to a widely researched and extensively applied class of finite difference methods [11–17]. See [18] and
the references therein for a complete exposition of the method and its numerous applications, and [19] for justification of
the general IIM approach. Using generalized Taylor expansions, the original IIM adaptively modifies the stencil to obtain
OðhÞ truncation error along the interface. For smooth b, this reduces to the standard 5-point or 7-point finite difference
stencil, but otherwise results in an asymmetric discretization that follows from locally solving constrained optimization
problems that enforce a discrete maximum principle [20]. The IIM also generally requires the evaluation of higher order
jump conditions and surface derivatives along the interface. This can lead to difficulty in implementation, especially in 3
dimensions [21,18,15,17]. Chen and Strain described a new approach to the IIM, called the Piecewise-polynomial Interface
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