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A robust multilevel preconditioner based on the hybridizable discontinuous Galerkin
method for the Helmholtz equation with high wave number is presented in this paper.
There are two keys in our algorithm, one is how to choose a suitable intergrid transfer
operator, and the other is using GMRES smoothing on the coarse grids. The multilevel
method is performed as a preconditioner in the outer GMRES iteration. To give a
quantitative insight of our algorithm, we use local Fourier analysis to analyze the
convergence property of the proposed multilevel method. Numerical results show that
for fixed wave number, the convergence of the algorithm is mesh independent. Moreover,
the performance of the algorithm depends relatively mildly on wave number.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the Helmholtz equation with Robin boundary condition which is the first order approximation
of the radiation condition. The equation is written in a mixed form as follows: Find (q, u) such that

iκq + ∇u = 0 in Ω, (1.1)

iκu + div q = f in Ω, (1.2)

−q · n + u = g on ∂Ω, (1.3)

where Ω ⊂ R
d , d = 2,3, is a polygonal or polyhedral domain, κ > 0 is known as the wave number, i = √−1 denotes the

imaginary unit, and n denotes the unit outward normal to ∂Ω . The Helmholtz equation finds applications in many important
fields, e.g., in acoustics, seismic inversion and electromagnetic, but how to solve the Helmholtz equation efficiently is still of
great challenge.

The strong indefiniteness has prevented the standard multigrid methods from being directly applied to the discrete
Helmholtz equation. In [9], Elman, Ernst and O’Leary modified the standard multigrid algorithm by adding GMRES iterations
as corrections on coarse grids and using it as an outer iteration. But in order to obtain a satisfactory convergence behavior,
a relatively large number of GMRES smoothing should be performed on coarse grids which leads to relatively large memory
requirement, so the optimality of the multigrid algorithm cannot be guaranteed. In [6], the authors utilized the continuous
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interior penalty finite element methods [23,24] to construct the stable coarse grid correction problems, which reduces the
steps of GMRES smoothing on coarse grids. Based on the fact that the error components which cannot be reduced by the
standard multigrid can be factorized by representing it as the product of a certain high-frequency Fourier component and a
ray function, Brandt and Livshits introduced so-called wave-ray multigrid methods in [3,20]. Although this method exhibits
high convergence rate with increasing wave number, it does not easily generalize to unstructured grids and complicated
Helmholtz problems. Besides, shifted Laplacian preconditioners [13,14] and sweeping preconditioners [10,11] based on an
approximate LDLt factorization were introduced to solve the Helmholtz equation with high wave number. A survey of the
development of fast iterative solvers can be found in [12,15].

Hybridizable discontinuous Galerkin (HDG) method has two main advantages in the discretization of Helmholtz equation.
First, it is a stable method, which means that the discrete system is always well-posed without any mesh constraint. Rigor-
ous convergence analysis of the HDG method for the Helmholtz equation can be found in [5]. Second, comparing to standard
discontinuous Galerkin method, HDG method results in significantly reducing the degrees of freedom, especially when the
polynomial degree p is large. However, to the best of our knowledge, no efficient iterative method or preconditioner for
HDG discretization system for the Hemholtz equation in the literature has been proposed.

The hybridized system is a linear equation for Lagrange multipliers which is obtained by eliminating the flux as well as
the primal variable. For the second-order elliptic problems, a Schwarz preconditioner for the algebraic system was presented
in [18]. In [19], the authors consider the application of a variable V-cycle multigrid algorithm for the hybridized mixed
method for second-order elliptic boundary value problems. In their multigrid algorithm, both smoothing and correction on
coarse grids are based on standard piecewise linear continuous finite element discretization system. The convergence of the
multigrid algorithm depends on an assumption that the number of smoothing increases in a specific way (see Theorem 3.1
in [19] for details). The critical ingredient in the algorithm is how to choose a suitable intergrid transfer operator. Numerical
experiments in [19] show that certain ‘obvious’ transfer operators lead to slow convergence.

The objective of this paper is to propose a robust multilevel method for the HDG approximation of the Helmholtz equa-
tion. The main ingredients in the multilevel method are how to construct the coarse grid correction problem and perform
efficient smoothing. Since strong indefiniteness arises for the Helmholtz equation with large wave number, standard Jacobi
or Gauss–Seidel smoothers become unstable on the coarse grids. Motivated by the idea in [9], we use GMRES smoothing for
those coarse grids. Unlike the smoothing strategy in [9], the number of GMRES smoothing steps in our algorithm is much
smaller, even if one smoothing step may guarantee the convergence of our multilevel algorithm. Moreover, smoothing on
both fine and coarse grids in our multilevel method is based on hybridized system of Lagrange multiplier on each level.

Local Fourier analysis (LFA) has been introduced for multigrid analysis by Achi Brandt in 1977 (cf. [2]). We mainly utilize
the LFA to analyze smoothing properties of relaxations and convergence properties of two and three level methods in
the one dimensional case. This may provide quantitative insights into the proposed multilevel method for the Helmholtz
problem (1.1)–(1.3). A survey for LFA can be found in [22].

The remainder of this paper is organized as follows: In Section 2, we firstly review the formulation of HDG method for
the Helmholtz equation and present our multilevel algorithm. The stability estimate of the intergrid transfer operator will
be carried out in Section 3. Section 4 is devoted to the LFA of the multilevel method in one dimensional case. Finally, we
give some numerical results to demonstrate the performance of our multilevel method.

2. HDG method and its multilevel algorithm

Let Th be a quasi-uniform regular subdivision of Ω , and denote the collection of edges (faces) by Eh , while the set of
interior edges (faces) by E0

h and the collection of element boundaries by ∂Th := {∂T | T ∈ Th}. We define hT := diam(T )

and let h := maxT ∈Th hT . Throughout this paper we use the standard notations and definitions for Sobolev spaces (see, e.g.,
Adams [1]).

On each element T and each edge (face) F , we define the local spaces of polynomials of degree p � 1:

V (T ) := (
Pp(T )

)d
, W (T ) := Pp(T ), M(F ) := Pp(F ),

where Pp(S), S = T or F , denotes the space of polynomials of total degree at most p on S . The corresponding global finite
element spaces are given by

V p
h := {

v ∈ L2(Ω)
∣∣ v|T ∈ V (T ) for all T ∈ Th

}
,

W p
h := {

w ∈ L2(Ω)
∣∣ w|T ∈ W (T ) for all T ∈ Th

}
,

M p
h := {

μ ∈ L2(Eh)
∣∣ μ|F ∈ M(F ) for all F ∈ Eh

}
,

where L2(Ω) := (L2(Ω))d , L2(Eh) := ∏
F∈Eh

L2(F ). On these spaces we define the bilinear forms

(v, w)Th :=
∑
T ∈Th

(v, w)T , (v, w)Th :=
∑

T ∈Th

(v, w)T , and 〈v, w〉∂Th :=
∑
T ∈Th

〈v, w〉∂T ,

with (v, w)T := ∫
T v · w dx, (v, w)T := ∫

T v w dx and 〈v, w〉∂T := ∫
∂T v w ds.
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