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a b s t r a c t

A mass conserving semi-Lagrangian (SL) scheme is achieved with a combination of a sim-
ple explicit smoothness-based mass correction and a standard non-conservative interpo-
lating SL scheme. The resulting mass correction can be incorporated into any existing SL
scheme with negligible extra cost. A more selective and less damping monotonicity filter
by comparison to traditional filters is also presented. Results from various tests from the
literature show that, in addition to mass conservation, the proposed scheme has negligible
impact on the overall accuracy of the standard non-conservative SL scheme.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.

1. Introduction

Semi-Lagrangian (SL) advection schemes are widely used in atmospheric models. Their unconditional stability and the
computational efficiency concomitant from using large time steps have been the main reasons for their use as transport
schemes for many weather and climate models [1]. The main drawback of SL schemes is the lack of mass conservation
for quantities where conservative transport is crucial to the accuracy and the appropriate physical behaviour of the model.

Mass conservation has been achieved using either mass fixing schemes or conservative remappings. Recently there have
been a number of conservative remapping schemes developed to inherently conserve mass [2–4], including the SLICE algo-
rithm [5]. Multi-dimensional remappings can be relatively expensive due to the extra geometric computations needed and
this has been the main reason for their limited application in operational models. On the other hand, mass fixing schemes [6–
11], whereby global mass conservation is restored diagnostically, are more appealing due to their simplicity and the rela-
tively negligible cost of incorporating them within existing SL schemes. Moreover, the loss of mass using standard SL
schemes, especially high-order schemes, is relatively small. The combination of the relative cheapness of the method and
the small mass deficit makes mass fixers a viable and attractive proposition for mass conservation within SL schemes. How-
ever, the main criticism of these fixers is the ad hoc nature of where the deficit/surplus is added or subtracted.

The goal of this paper is to present a simple and efficient scheme for restoring mass conservation to the standard
non-conservative SL solution without a significant impact on the accuracy of the original SL solution. Although, conservative
remappings are more mathematically based and probably describe more accurately the evolution of local and global mass
integrals, the present scheme can be an efficient alternative for the circumstances where mass conservation is paramount yet
the computational resources are limited. The rest of the paper is organised as follows: Section 2 briefly describes a standard
SL scheme and the proposed mass fixing scheme together with a more improved monotonicity filter; results using the
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proposed scheme are presented in Section 3 and compared with those using standard non-conservative SL; and conclusions
are summarised in Section 4.

2. Semi-Lagrangian transport

Consider a passive advection of a scalar quantity governed, in the absence of sources, by

Dq
Dt
þ qr � u ¼ 0; ð1Þ

where q(x, t) is the density, at location x at time t, of the transported quantity; u is the fluid velocity; and D=Dt � @=@t þ u � r
is the Lagrangian derivative following the fluid.

Integrating (1) over a finite volume element V(t) moving with the fluid leads to the classical Lagrangian integral form of
the tracer conservation:

D
Dt

Z
VðtÞ

qdV

 !
¼ 0: ð2Þ

Eq. (2) implies that the mass contained in an element V(t) that moves with the fluid, is invariant in time. A consequence of (2)
is that in the absence of sources/sinks the global mass is also invariant for a periodic domain (e.g., sphere) or a closed prob-
lem (i.e., zero fluxes at the boundaries). Any point x of the volume V(t) moves according to the trajectory equation

Dx
Dt
¼ u: ð3Þ

Given the discrete solution qn
i � qðxi; tnÞ at N Eulerian (fixed) grid points {xi, i = 1, . . . ,N} and the known velocity field u(xi, t),

the solution of (1) (i.e., qnþ1
i � qðxi; tnþ1 ¼ tn þ DtÞ), using a two-time-level, central, semi-implicit, semi-Lagrangian scheme,

can be written as:

qnþ1
i � qn

i;d ¼ �
Dt
2

qnþ1
i r � uð Þnþ1

i � Dt
2

qn
i;d r � uð Þni;d; ð4Þ

where the subscripts (i,d) refers to evaluation (or interpolation) at the location xi,d, which is the departure point of xi, deter-
mined from the integration of (3) (i.e., xi � xi;d ¼

R tnþ1

tn uðx; tÞdt). Expressing terms at the departure point in terms of known
counterparts at grid-points, (4) can be rewritten as:

qnþ1
i ¼ bi

XN

j¼1

aijqn
j ; ð5Þ

where aij are interpolation weights and bi accounts for the averaging of the divergence along the trajectory,

bi ¼
2� Dt r � uð Þni;d

2þ Dtðr � uÞnþ1
i

¼
2� Dt

PN
j¼1aijðr � uÞnj

2þ Dtðr � uÞnþ1
i

; ð6Þ

where bi = 1 for a non-divergent flow (i.e., r � u = 0).
Evaluation of a quantity at a departure point means using an interpolation from the known field at the Eulerian grid {xi,

i = 1, . . . ,N}. Often there is also the requirement to interpolate different fields at the same location (e.g., transport of multi-
species in chemistry models) and therefore it is more efficient to compute the interpolation weights aij then compute the
interpolated values for the different species as simple summations as in (5). Although the present scheme does not impose
any restriction on aij (including weights derived from global interpolants such as splines), here only Lagrange polynomials
weights are used, as they are commonly used with SL schemes. SL schemes often use Lagrangian polynomials up to a certain
degree p (i.e., aij – 0 for only H = (p + 1)k points surrounding the interpolation point xi,d, where k = 1, . . ., 3 is the dimension of
the problem).

2.1. Mass conservation

It is clear that the interpolation operation (5) does not guarantee mass conservation. Let us assume that the non-conser-
vative high-oder SL solution obtained from (5) is rewritten as:

~qnþ1
i ¼ bi

XN

j¼1

aH
ij q

n
j ; ð7Þ

where aH
ij are derived from a high-order interpolant, i.e., aH

ij – 0 for H points surrounding the interpolation target, 2k < H 6 N.
A solution fqnþ1

i ; i ¼ 1; . . . ;Ng is said to be mass conservative iff the following constraint:

XN

i¼1

qnþ1
i V i ¼

XN

i¼1

qn
i V i ¼

XN

i¼1

q0
i V i � M0; ð8Þ
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