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a b s t r a c t

A new high order finite-difference method utilizing the idea of Harten ENO subcell resolu-
tion method is proposed for chemical reactive flows and combustion. In reaction problems,
when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid
dynamics time scales, the governing equations will become very stiff. Wrong propagation
speed of discontinuity may occur due to the underresolved numerical solution in both
space and time. The present proposed method is a modified fractional step method which
solves the convection step and reaction step separately. In the convection step, any high
order shock-capturing method can be used. In the reaction step, an ODE solver is applied
but with the computed flow variables in the shock region modified by the Harten subcell
resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme
and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar
and Euler system test cases are investigated. Studies indicate that for the considered test
cases, the new method maintains high order accuracy in space for smooth flows, and for
stiff source terms with discontinuities, it can capture the correct propagation speed of dis-
continuities in very coarse meshes with reasonable CFL numbers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is dis-
continuous, spurious numerical results may be produced due to different time scales of the transport part and the source
term. This numerical issue often arises in combustion and high speed chemical reacting flows.

The reactive Euler equations in two dimensions have the form

Ut þ FðUÞx þ GðUÞy ¼ SðUÞ; ð1Þ

where U, F(U), G(U) and S(U) are vectors. If the time scale of the ordinary differential equation (ODE) Ut = S(U) for the source
term is orders of magnitude smaller than the time scale of the homogeneous conservation law Ut + F(U)x + G(U)y = 0 then the
problem is said to be stiff. In high speed chemical reacting flows, the source term represents the chemical reactions which
may be much faster than the gas flow. This leads to problems of numerical stiffness. Insufficient spatial/temporal resolution
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may cause an incorrect propagation speed of discontinuities and nonphysical states for standard dissipative numerical
methods.

This numerical phenomenon was first observed by Colella et al. [13] in 1986 who considered both the reactive Euler equa-
tions and a simplified system obtained by coupling the inviscid Burgers’ equation with a single convection/reaction equation.
LeVeque and Yee [23] showed that a similar spurious propagation phenomenon can be observed even with scalar equations,
by properly defining a model problem with a stiff source term. They introduced and studied the simple one-dimensional sca-
lar conservation law with an added nonhomogeneous parameter dependent source term

ut þ ux ¼ SðuÞ; ð2Þ

SðuÞ ¼ �lu u� 1
2

� �
ðu� 1Þ; ð3Þ

where the parameter 1
l can be described as the reaction time. When l is very large, a wrong shock speed phenomenon will be

observed in a coarse mesh. In order to isolate the problem, LeVeque and Yee solve (2) and (3) by the fractional step method.
For the particular source term, the reaction (ODE) step of the fractional step method can be solved exactly. They found that
the propagation error is due to the numerical dissipation contained in the scheme, which smears the discontinuity front and
activates the source term in a nonphysical manner. By increasing the spatial resolution by an order of magnitude, they were
able to improve towards the correct propagation speed.

It is noted that, in a general stiff source term problem, a sufficient spatial resolution is as important as temporal resolution
when the reaction step of the fractional step method cannot be solved exactly. A study linking spurious numerical standing
waves for (2) and (3) by first and second-order spatial and temporal discretizations can be found in Lafon and Yee [22,21]
and Griffiths et al. [15].

For the last two decades, this spurious numerics phenomenon has attracted a large volume of research work in the lit-
erature (see, e.g., [5,28,6,32,8,15,24,1,7,27]). Various strategies have been proposed to overcome this difficulty. Since numer-
ical dissipation that spreads the discontinuity front is the cause of the wrong propagation speed of discontinuities, a natural
strategy is to avoid any numerical dissipation in the scheme. In combustion, level set and front tracking methods were used
to track the wave front to minimize this spurious behavior [24,1,7,27]. In [11,12], Chorin introduced the random choice
method which is based on the exact solution of Riemann problems at randomly chosen locations within the computational
cells and does not need to introduce any viscosity. It has been successfully used in [13,25] for the solution of underresolved
detonation waves. However, it is difficult to eliminate all numerical viscosity in a shock-capturing scheme. There are also
many works on modifying shock-capturing methods for this problem in the literature. Fractional step methods are com-
monly used for allowing an underresolved meshsize. Such methods solve the homogeneous conservation law (i.e., the con-
vection step) and the ODE system (i.e., the reaction step) separately. In [9,10], Chang applied Harten’s subcell resolution
method [16] in a finite volume ENO method in the convection step with exact time evolution, which is able to produce a
zero viscosity shock profile in the nonreacting flow. The time evolution is advanced along the characteristic line. Correct re-
sults were shown in the one-dimensional scalar case. However it seems difficult to extend this method to one-dimensional
systems or multi-dimensional scalar equations or systems, due to the requirement of exact time evolution. In [14], Engquist
and Sjögreen proposed a simple temperature extrapolation method based on a finite difference ENO scheme with implicit
Runge–Kutta time discretization, which uses a first/second order extrapolation of the temperature value from outside the
shock profile. Their approach is easily extended to multi-dimensions. However, their method is not a fractional step method,
and it does not work well in the situation of insufficient spatial resolution. Helzel et al. [17] presented a modified fractional
step method for detonation waves in which the exact Riemann solution is used to determine where burning should occur.
Bao and Jin [2–4] proposed a random projection method based on the fractional step method where in the convection step a
standard shock-capturing scheme is used, and in the reaction step a projection is performed to make the ignition tempera-
ture random. They have successfully applied this method to various problems in one- and two-dimensions. However they
assume an a priori stiff source. In [33], Tosatto and Vigevano proposed a MinMax scheme, which is based on a two-value
variable reconstruction within each cell, where the appropriate maximum and minimum values of the unknown are consid-
ered. The scheme may be applied with no difficulties to both stiff and nonstiff problems. Only one-dimensional problems
were tested. However, it seems difficult to generalize either the random projection method or the MinMax method to higher
order accuracy. There are other works in the literature for stiff source hydrodynamics, e.g. [26].

Our objective in this study is to develop a high order finite difference method which can capture the correct detonation
speed in an underresolved mesh and will maintain high order accuracy in the smooth part of the flow. The first step of the
proposed fractional step method is the convection step which solves the homogeneous hyperbolic conservation law in which
any high-resolution shock-capturing method can be used. The aim in this step is to produce a sharp wave front, but some
numerical dissipation is allowed. The second step is the reaction step where an ODE solver is applied with modified transi-
tion points. Here, by transition points, we refer to the smeared numerical solution in the shock region, which is due to the
dissipativity of a shock-capturing scheme. Because the transition points in the convection step will result in large erroneous
values of the source term if the source term is stiff, we first identify these points and then extrapolate them by a recon-
structed polynomial using the idea of Harten’s subcell resolution method. Unlike Chang’s approach, we apply Harten’s sub-
cell resolution in the reaction step. Thus our approach is flexible in allowing any shock-capturing scheme as the convection
operator. In the reaction step, since the extrapolation is based on the high order reconstruction, high order accuracy can be
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