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the conservation laws on momentum control volumes. A higher-order divergence-free
interpolation for convective velocities is developed which ensures a perfect conservation
of mass and momentum on momentum control volumes. Three forms of the nonlinear cor-
rection for staggered grids are proposed and studied. The accuracy of each approximation
is assessed comparatively in Fourier space. The importance of higher-order approximations
Navier-Stokes equations of pressure is discussed and numerically demonstrated. Fourth-order accuracy of the com-
Higher-order schemes plete scheme is illustrated by the doubly-periodic shear layer and the instability of plane-
Compact schemes channel flow. The efficiency of the scheme is demonstrated by a grid dependency study of
Staggered grids turbulent channel flows by means of direct numerical simulations. The proposed scheme is
highly accurate and efficient. At the same level of accuracy, the fourth-order scheme can be
ten times faster than the second-order counterpart. This gain in efficiency can be spent on a
higher resolution for more accurate solutions at a lower cost.
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1. Introduction

Over a half century, Computational Fluid Dynamics (CFD) plays an important part helping engineers and scientists to
understand the nature of turbulent flows. An accurate time-dependent numerical simulation of turbulent flow can be ob-
tained by direct numerical simulation (DNS) which solve the discrete Navier-Stokes equations directly. DNS can be very
accurate but extremely expensive. The complexity of a DNS is roughly rising with O(Re®?). This scaling restricts DNS to
low or moderate Reynolds numbers. A promising alternative simulation to DNS is the large eddy simulation (LES) in which
the large-scale structures of the flow are resolved and the small-scale structures are modelled.

In an essence of numerical simulations, these two approaches rely heavily on the accuracy of the spatial information of
the flow field. A satisfactory simulation cannot be obtained if the dynamics of the flow are not described in a sufficiently
accurate way. Modelling effects of the small scales in an LES will not improve the overall accuracy of the solution when
the numerical error was larger than the effects of the small scales [1]. The accuracy of the flow field information can be im-
proved by increasing the numerical grid points or increasing the accuracy order of the numerical approximations. The latter
approach has become an active field of research in recent years.

Higher-order approximations can be computed explicitly using Lagrange polynomials. The nth order approximation of the
mth order derivative requires n + m abscissas. Alternatively, one can couple unknown values to the abscissas and solve a sys-
tem of linear equations. These implicit approximations have shorter stencils and have been called compact scheme by Lele [2]
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who demonstrates the superiority of compact schemes over traditional explicit schemes. At intermediate wave numbers, the
compact fourth-order scheme is even better than the explicit sixth-order scheme. He quantified the resolution characteris-
tics of second and higher-order schemes and showed that for a relative error of 0.1%, the fourth-order compact differentia-
tion requires 5 points per half-wave, the fourth-order explicit requires 8 grid points and the second-order requires 50. In
three-dimensional simulations, the total number of grid points grows cubically while the cost of higher-order schemes is
linearly proportional to the second-order scheme. Thus using higher-order schemes is more attractive than a brute force
increasing of resolution.

The finite volume methods (FVM) hold a strong position in CFD community because of their intrinsic conservation prop-
erties. Despite the popularity of the second-order FVM, there are only a few papers addressing its developments towards
higher-order. The complicated relationship of volume-averaged values and surface fluxes made higher-order FVM more dif-
ficult than the finite difference (FD) counterpart. The first work that tries to link compact schemes to FVM is presented by
Gaitonde and Shang [3]. They present fourth- and sixth-order compact finite volume methods for linear wave phenomena.
However, the so-called reconstruction procedure is needed to compute the primitive value, which costs significant compu-
tational time. A more economical approach is proposed by Kobayashi [4]. He directly calculates the surface-averaged values
from the volume-averaged ones. Explicit and implicit approximations based on the cell-averaged value up to 12th-order are
analysed. Pereira et al. [5] present a compact finite volume method for the two-dimensional Navier-Stokes equations on col-
located grids. Piller and Stalio [6] propose a compact finite volume method on staggered grids in two dimensions. Lacor et al.
[7] develops a finite volume method on arbitrary collocated structured grids and performs LES of a turbulent channel flow at
Re. = 180. LES of the same flow with explicit filtering is performed in [8] using the spatial discretisation of [5]. Fourth-order
finite volume in cylindrical domain is developed in [9] and a DNS of pipe flow at Re; = 360 is performed.

Staggered grids have become a favourable arrangement over collocated grids because of the pressure decoupling prob-
lem. The pressure decoupling is not confined only in the second-order scheme. This problem is already reported in [5] when
using even number of cells with a fourth-order scheme. Recently, a staggered grid has been shown to be more robust than
collocated one by Nagarajan et al. [10] in large-eddy simulations. Thus compact finite volume methods on staggered grids
deserves more attention.

On staggered grids, there are three problems to solve in order to achieve higher-order accuracy under finite volume dis-
cretisation, namely (i) the approximation of convective velocities, (ii) the treatment of nonlinear terms and (iii) the discretisation
of the pressure term. The convective process requires the convective velocities on the surfaces of the momentum cells which
are defined staggered to the pressure cells. On collocated grids, the face-averaged values of the momentum can be used to
approximate the convective velocities because they are positioned correctly. However, on staggered grids the face-averaged
momentums are aligned differently and the convective velocities must be interpolated accordingly. A simple interpolation,
however, can violate the conservation of mass on the momentum cells. Higher-order divergence-free interpolations are still
an open issue. The treatment of nonlinearity of the convective fluxes over the cell surface was addressed by Pereira et al. [5].
Nevertheless, the reconstruction of the nonlinear fluxes must be chosen wisely. The role of the pressure term in higher-order
methods is still a matter of controversy among researchers in this field. It has been shown in [11-13] that the approximation
of the pressure term has to be the same order as the one of the convective and diffusive fluxes. When the pressure is approx-
imated using lower order, the overall accuracy is limited by this approximation. In [6,14] the second-order solution of pres-
sure is found to be sufficient for a fourth-order accurate solution of velocities. This issue must be clarified because it is crucial
to the cost of computations. The solution of the pressure can easily take more than half of the computation time. If a second-
order approximation of the Poisson equation for the pressure was sufficient, then the higher-order accuracy of the momen-
tum can be achieved at a marginal cost. However, if a fourth-order treatment of the pressure is necessary, a 19-point stencil
of the Laplacian operator must be used instead of a simple 7-point stencil.

In the present work, we have two objectives. The first objective is to present the development of a fourth-order method
for finite volume discretisation of the Navier-Stokes Equations by solving the questions posed in the previous paragraph. We
propose a novel interpolation that preserves the discrete divergence-free property of the velocity fields. This method is gen-
eralized for arbitrary order of accuracy. Another fourth-order convective velocity that is not divergence-free is presented for
comparison. Several choices of nonlinear corrections and the role of the pressure term are studied. We present new cell-cen-
tered deconvolutions for the mass and pressure fluxes. These approximations are explicit and lead to a banded system of the
Poisson equation given by the projection method. The higher resolution properties of these cell-centered deconvolutions are
demonstrated by the comparative Fourier analysis. We show that the solution of the pressure with lower order indeed limits
the accuracy of the solution. However, this limitation on staggered grids is not as severe as on collocated ones reported in
[11]. We use Fourier analysis to show that staggered grids can satisfy the incompressibility constraint in a better way than
collocated grids and more information can be retained in the flow field.

The second objective of this work is to verify whether the fourth-order scheme can out perform the second-order scheme
in terms of accuracy and efficiency. Despite the fact that higher-order schemes are shown to be vastly superior to second-
order schemes in laminar flows by numerous authors, some recent papers report disappointing findings in the application of
higher-order schemes to turbulent flows. Gullbrand [15] applies the fully-conservative explicit fourth-order scheme of
Morinishi et al. [16] and Vasilyev [17] to a DNS of turbulent channel flow. Knikker [13] developed a compact finite difference
method and applied it to the same flow. The grid resolutions used in their simulations are comparable to those used by the
spectral code in [18]. They both report that differences between the results from second-order and fourth-order schemes are
negligible and these results are significantly different from the spectral code. Meinke et al. [19] comment that the sixth-order
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