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a b s t r a c t

Many real-world numerical models are notorious for the time scale separation of different
subsets of variables and the inclusion of random processes. The existing algorithms of lin-
ear response to external forcing are vulnerable to the time scale separation due to
increased response errors at fast scales. Here we develop the approximate linear response
algorithm for slow variables in a two-scale dynamical system with explicit separation of
slow and fast variables, which has improved numerical stability and reduced computa-
tional expense.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recently, Majda and the author [1–4] developed and tested a novel computational algorithm for predicting the mean re-
sponse of nonlinear functions of states of a chaotic dynamical system to small change in external forcing via the fluctuation–
dissipation theorem (FDT). This algorithm (called the short-time FDT (ST-FDT) algorithm in [2–4]) takes into account the fact
that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the clas-
sical quasi-Gaussian formula of the fluctuation–dissipation theorem often fails to produce satisfactory response prediction,
especially in dynamical regimes with weak and moderate chaos and slower mixing. It has been discovered that the ST-FDT
algorithm is an extremely precise response approximation for short response times, and can be blended with the classical
quasi-Gaussian FDT algorithm (qG-FDT) for longer response times to alleviate negative effects of expanding Lyapunov direc-
tions. Additionally, in [1] the author developed a computationally inexpensive approximate method for ST-FDT using the re-
duced-rank tangent map. Majda and Wang [9] developed a comprehensive linear response framework in the case of non-
autonomous dynamics with time-periodic forcing (which also applies for general non-autonomous dynamics).

However, in multiscale dynamical systems with time scale separation the ST-FDT method can be vulnerable to the pres-
ence of the fast variables, especially when the response is practically needed only for slow model variables (such as those in a
climate system), due to increased response errors at fast scales. Moreover, it is often the case that there are only a few slow
variables in the model and a large number of fast variables. Even if only the response of the slow variables is needed, in a
straightforward implementation such as that in [3,2,4], the ST-FDT response operator has to be computed for all variables
in the model, which can be computationally expensive or even practically impossible for models with large sets of fast
variables.

In the work, we develop an approximate response algorithm based on averaged dynamics of multiscale systems
[10,12,13]. The new method allows to compute the response operators directly at slow variables using existing FDT formulas,
which improves numerical stability and reduces computational expense.
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2. Average response for two-scale systems perturbed at slow variables

Consider a two-scale system of Itô stochastic differential equations of the form

dx
dt
¼ Fðx; y; tÞ;

dy ¼ 1
e

Gðx; y; t; eÞdt þ 1ffiffiffi
e
p rðx; y; t; eÞdW t ;

ð2:1Þ

where x ¼ xðtÞ 2 RNx is the set of slow variables, and y ¼ yðtÞ 2 RNy is the set of fast variables. This situation is common in
geophysical science, where the time scale of different state variables of a weather/climate system can range between min-
utes and months (or even years), and fast variables are often driven by a random process. In (2.1) we use the following nota-
tions: Wt is the K-dimensional Wiener process, F and G are Nx and Ny vector-valued functions of x, y and t, and r is a Ny � K
matrix-valued function of x, y and t. For the purpose of this work, here we assume that there is a constant parameter
0 < e� 1 which sets the time scale separation between x(t) and y(t) into slow and fast variables, respectively, and we addi-
tionally assume that G and r continuously depend on e.

We make a general assumption that, given a time t0 and a probability measure Pt0 , the non-autonomous dynamical sys-
tem in (2.1) transports it into Pt0þt , where t is the elapsed interval of time after t0. Then, by qt0þt we denote the marginal
measure of Pt0þt for the set of slow variables x, such that for any observable A(x) its average value hAi(t0 + t) is given by

hAiðt0 þ tÞ ¼ qt0þtðAÞ �
Z

RNx
AðxÞdqt0þtðxÞ: ð2:2Þ

We say that the system in (2.1) is perturbed at slow variables when there is a small forcing w(x)df(t) applied at slow variables:

dx
dt
¼ Fðx; y; tÞ þwðxÞdf ðtÞ;

dy ¼ 1
e

Gðx; y; t; eÞdt þ 1ffiffiffi
e
p rðx; y; t; eÞdW t ;

ð2:3Þ

where w(x) is an Nx � L matrix-valued function of x, while df(t) is a L vector-valued function of time t for some integer L. For
the perturbed system in (2.3) we assume that Pt0 is transported into P�t0þt with the corresponding marginal measure q�t0þt for
slow variables. Finally, we define the average response of A(x) to the small forcing in (2.3), starting at t0, as

dqt0þtðAÞ ¼ q�t0þtðAÞ � qt0þtðAÞ: ð2:4Þ

Our goal here is to compute a linearization of (2.4) with respect to the forcing w(x)df(t) in (2.3) under the assumption that
both the forcing and the response are small, which is provided by FDT [1,3,2,4,8]. Observe that both the forcing w(x)df(t) and
the response function A(x) involve only slow variables x. However, a straightforward application of the FDT linearization of
the response to (2.4) will lead to the computation of the linear response operator for the complete set of model variables,
that is, for both x and y. This is undesirable for the following reasons: first, it can make the computation of the response
expensive (especially if there are many fast variables, which is often the case); and, second, the stability of the ST-FDT re-
sponse operator may suffer due to large Lyapunov exponents at fast variables. In what follows we develop the approximate
FDT formulas under the assumption that the behavior of the slow variables in (2.1) approaches the limiting case of ‘‘infinitely
fast” y-variables.

3. Limiting dynamics for slow variables

We rescale the time in (2.1) and (2.3) as t ¼ e~t. For the rescaled time ~t, the equation for fast variables y in both (2.1) and
(2.3) becomes

dy ¼ Gðx; y; e~t; eÞd~t þ rðx; y; e~t; eÞdW~t : ð3:1Þ
Following [10,12,13], in the vicinity of some x and t, we write the separate degenerate system for the fast variables in the
limiting form as e ? 0:

dz ¼ Gðx; z; t;0Þd~t þ rðx; z; t;0ÞdW~t ; ð3:2Þ

where x and t are treated as constant parameters, and, therefore, z parametrically depends on x and t. Observe that the lim-
iting system for the fast variables in (3.2) is autonomous, that is, it does not explicitly depend on ~t (except for the Wiener
process). Here we assume that (3.2) possesses the invariant ergodic probability measure lx,t, which depends on x and t as
parameters.

Now, following [10,12,13] we write the averaged perturbed and unperturbed systems for the slow variables x as

dx
dt
¼ Fðx; tÞ; ð3:3Þ

dx
dt
¼ Fðx; tÞ þwðxÞdf ðtÞ; ð3:4Þ
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