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a b s t r a c t

In 1980, Kleiser and Schumann introduced a novel influence-matrix method to treat the
incompressibility and no-slip boundary conditions when solving the Navier–Stokes
equations. They also outlined the related ‘‘tau’’ error correction technique which is
essential for the high accuracy direct numerical simulation (DNS) of turbulent flows. How-
ever, their method is not valid for Robin type velocity boundary conditions (i.e.,
B(u) = au + bu0 � c = 0). In this note, a new influence-matrix method is introduced where
the boundary condition and ‘‘tau’’ correction are enforced in one step using an extended
influence matrix. The new method is simple and easy to be implemented. It broadens the
applicability of the Kleiser and Schumann method. Examples with the new method show
excellent agreement with data in the literature and the velocity field is divergence free
up to machine precision.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Kleiser and Schumann [1] introduced a novel method to treat the incompressibility and boundary conditions when solv-
ing the Navier–Stokes equations for flows bounded by two parallel no-slip walls. Werne [2], based on the understanding of
the original paper by Kleiser and Schumann [1] and other reproductions of this method (such as [3]), proposed a revised
algorithm which treats the ‘‘tau’’ error on the ‘‘A’’-problem level. In response, Kleiser et al. [4] pointed out that the original
method in [1] has no error. In fact, both methods are correct and equally applicable. However, both methods are limited to
channel flows bounded by no-slip walls.

This note contributes to the extension of the boundary conditions to the Robin type. The new method, as well as the ori-
ginal method, is based on the linearity of the coupled Helmholtz equation systems for pressure and wall normal velocity.
However, the complications associated with the generalized boundary conditions make the original method not applicable.
The new method will be described next and be demonstrated by an example.

2. Solution for the Helmholtz equations

It is assumed that the domain of the flow field is periodic in the streamwise (x) and spanwise (z) directions such that the
incompressible Navier–Stokes equations can be Fourier transformed in both directions. In the wall normal (y)-direction,
Chebyshev expansion is used. In this paper, u, v, and w will be used to denote, respectively, the velocity components in
streamwise, wall normal, and spanwise directions. All quantities are normalized by wall shear velocity us, the channel half
width h, and the fluid viscosity m, unless otherwise specified. Numerically integrating the Fourier transformed governing
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equation in time and after some manipulations (see for example [3]), the problem is reduced to a coupled system of 1D
Helmholtz equations for wall normal velocity and pressure

p̂00 � k2p̂ ¼ r̂ � eR ð1Þ
mv̂ 00 � kv̂ � p̂0 ¼ �Ry ð2Þ

with the boundary conditions

B1ðv̂Þ ¼ 0; B2ðv̂Þ ¼ 0 at y ¼ �1 and y ¼ þ1 ð3Þ

The primitives denote the derivatives with respect to y. The hat means the variables have been transformed into Fourier
space. The right hand sides of both equations are terms resulting from the aforementioned operations. The two boundary
conditions are derived from the slip/no-slip nature of the fluid and the divergence free requirement at the boundary. Without
loss of generality, B1 operator is designated as the former and B2 operator for the later. In general, the boundary condition
operators B1 and B2 in Eq. 3 are of Robin type, i.e., Bðv̂Þ ¼ av̂ þ bv̂ 0 � c. Eqs. (1)–(3) forms the so-called A-problem.

The equations for û and ŵ read

mû00 � kû� ikxp̂0 ¼ �Rx ð4Þ
mŵ00 � kŵ� ikzp̂0 ¼ �Rz ð5Þ

where kx and kz are wave numbers in streamwise and spanwise directions, respectively. The general boundary conditions of
Robin type for û and ŵ can be written as

au�ûþ bu�û0 ¼ cu�dkx ;kz ð6Þ
auþûþ buþû0 ¼ cuþdkx ;kz ð7Þ
aw�ŵþ bw�ŵ0 ¼ cw�dkx ;kz ð8Þ
awþŵþ bwþŵ0 ¼ cwþdkx ;kz ð9Þ

Here the subscripts � and + are used to denote at the boundary y = � 1 and y = + 1, respectively. The a, b, and c coefficients
are assumed to be constant on each boundary. dkx ;kz is a two-dimensional Dirac delta function.

Upon Chebyshev tau discretization, the discrete A-problem can be written as

pð2Þm � k2pm ¼ rm � Dbm; m ¼ 0; . . . ;N � 2 ð10Þ
mv ð2Þm � kvm � pð1Þm ¼ �Ry;m þ bm; m ¼ 0; . . . ;N � 2 ð11Þ
B1vmðþ � 1Þ ¼ 0 ð12Þ
B2vmðþ � 1Þ ¼ 0 ð13Þ

Here bm = 0 when m = 0, . . . , N � 2, while bN�1 and bN are nonzero due to the tau errors, which have to be accounted for prop-
erly to satisfy the divergence free condition.

There are two separate subproblems which we shall introduce in the following sections. These two subproblems are dis-
tinguished by the coefficients of the general boundary conditions in Eqs. (6)–(9). For the first subproblem, the Helmholtz
equations for p̂ and v̂ can be solved separately from û and ŵ. For the second subproblem, the four Helmholtz equations
for p̂; û; v̂ , and ŵ are coupled together and a more general technique has to be used. In Chebyshev collocation method, this
complication of coupling has been dealt with properly by solving an extended A-problem (see for example [5]). The method
used in this paper is similar with the exception of Chebyshev tau discretization of the Helmholtz equations.

2.1. Subproblem 1: p̂–v̂ decoupled from û and ŵ

Theorem 1. The p̂–v̂ problem decouples from the û and ŵ equations when the a and b coefficients in the boundary conditions for û
and ŵ are equal, i.e., au� = aw� = a�, bu� = bw� = b�, au+ = aw+ = a+ and bu+ = bw+ = b+. The boundary condition operator B2 for the
p̂–v̂ problem required by continuity are a�v̂ 0 þ b�v̂ 00 ¼ 0 and aþv̂ 0 þ bþv̂ 00 ¼ 0.

Proof. To satisfy the continuity equation at the boundary y = � 1, it is equivalent to require

r̂ � û ¼ ikxûþ ikzŵþ v̂ 0 ¼ 0: ð14Þ

Taking the derivative of Eq. (14) with respect to y, one gets

ikxû0 þ ikzŵ0 þ v̂ 00 ¼ 0: ð15Þ

Multiplying Eqs. (14) and (15) by a� and b�, respectively and taking the sum give,

a�v̂ 0 þ b�v̂ 00 ¼ �½ikxða�ûþ b�û0Þ þ ikzða�ŵþ b�ŵ0Þ� ¼ �½ikxcu�dkx ;kz þ ikzcw�dkx ;kz � ¼ 0
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