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a b s t r a c t

Eigenvalue problems are fundamental to mathematics and science. We present a simple
algorithm for determining eigenvalues and eigenfunctions of the Laplace–Beltrami opera-
tor on rather general curved surfaces. Our algorithm, which is based on the Closest Point
Method, relies on an embedding of the surface in a higher-dimensional space, where stan-
dard Cartesian finite difference and interpolation schemes can be easily applied. We show
that there is a one-to-one correspondence between a problem defined in the embedding
space and the original surface problem. For open surfaces, we present a simple way to
impose Dirichlet and Neumann boundary conditions while maintaining second-order accu-
racy. Convergence studies and a series of examples demonstrate the effectiveness and gen-
erality of our approach.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The study of eigenvalues and eigenfunctions of the Laplacian operator has long been a subject of interest in mathematics,
physics, engineering, computer science and other disciplines. Of considerable importance is the case where the underlying
domain is a curved surface, S, in which case the problem becomes one of finding eigenvalues and eigenfunctions of the cor-
responding Laplace–Beltrami operator

�rS � rSu ¼ ku; ð1Þ

or, more generally, the elliptic operator

�rS � ðaðxÞrSuÞ ¼ ku:

The Laplace–Beltrami eigenvalue problem has played a prominent role in recent years in data analysis. For example, in [1],
eigenvalues of the Laplace–Beltrami operator were used to extract ‘‘fingerprints’’ which characterize surfaces and solid ob-
jects. In [2,3], Laplace–Beltrami eigenvalues and eigenfunctions were used for dimensionality reduction and data represen-
tation. Other application areas include smoothing of surfaces [4] and the segmentation and registration of shape [5].
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Analytical solutions to the Laplace–Beltrami eigenvalue problem are rarely available, so it is crucial to be able to numer-
ically approximate them in an accurate and efficient manner. Partial differential equations on surfaces, including eigenvalue
problems, have traditionally been approximated using either (a) discretizations based on a parameterization of the surface
[6], (b) finite element discretizations on a triangulation of the surface [7], or (c) embedding techniques which solve some
embedding PDE in a small region near the surface [8] (see also the related works [9–15]).

Parameterization methods (a) are often effective for simple surfaces [6], but for more complicated geometries have the
deficiency of introducing distortions and singularities into the method through the parameterization [16]. Approaches based
on the finite element method can be deceptively difficult to implement; as described in [7], ‘‘even though this method seems
to be very simple, it is quite tricky to implement’’. Embedding methods (c) have gained a considerable following because
they permit PDEs on surfaces to be solving using standard finite differences.

This paper proposes a simple and effective embedding method for the Laplace–Beltrami eigenvalue problem based on the
Closest Point Method. The Closest Point Method is a recent embedding method that has been used to compute the numerical
solution to a variety of partial differential equations [17–20], including in-surface heat flow, reaction-diffusion equations,
and higher-order motions involving biharmonic and ‘‘surface diffusion’’ terms. Unlike traditional embedding methods, which
are built around level set representatives of the surface, the Closest Point Method is built around a closest point represen-
tation of the surface. This allows for general smooth surfaces with boundaries and does not require the surface to have an
inside/outside [17]. In addition, the method does not introduce artificial boundary conditions at the edge of the computation
band. Such artificial boundary conditions typically lead to low-order accuracy [12].

Here we apply the Closest Point Method to the problem of determining the eigenvalues and eigenmodes of the Laplace–
Beltrami operator on a surface. We begin by demonstrating that, for closed surfaces, there is a one-to-one correspondence
between the eigenvalues of the embedding problem and the original surface problem. Later, we consider open surfaces and
present simple techniques for achieving high-order accurate approximations to Dirichlet and homogeneous Neumann
boundary conditions. Our proposed method retains the usual advantages of the Closest Point Method, namely generality
with respect to the surface, high-order accuracy and simplicity of implementation.

The paper unfolds as follows. Section 2 provides key background on the Closest Point Method. Section 3 proposes an
embedding problem used to solve the Laplace–Beltrami eigenvalue problem and explains why a similar embedding problem
leads to spurious eigenvalues. Section 4 provides discretization details. In Section 5, a second-order discretization of bound-
ary conditions is described for open surfaces. Section 6 validates the method with a number of convergence studies and
examples on complex shapes. Finally, Section 7 gives a summary and conclusions.

2. The Closest Point Method

We now review the ideas behind the Closest Point Method [17] which are relevant to the problem of finding Laplace–Bel-
trami eigenvalues and eigenfunctions.

The representation of the underlying surface is fundamental to any numerical method for PDEs on surfaces. The Closest
Point Method relies on a closest point representation of the underlying surface.

Definition 1 (Closest point function). Given a surface S; cpðxÞ refers to a (possibly non-unique) point belonging to S which is
closest to x.

The closest point function, defined in a neighborhood of a surface, gives a representation of the surface. This closest point
representation allows for general surfaces with boundaries and does not require the surface to have an inside/outside.
The surface can be of any codimension [17], or even of mixed codimension [20].

The goal of the Closest Point Method is to replace a surface PDE by a related PDE in the embedding space which can be
solved using finite difference, finite element or other standard methods. In the case of the Laplace-Beltrami eigenvalue prob-
lem, this approach relies on the following result, which states that the Laplace–Beltrami operator DS may be replaced by the
standard Laplacian D in the embedding space Rd under certain conditions.

Theorem 1. Let S be a smooth closed surface in Rd and u : S ! R be a smooth function. Assume the closest point function cp(x) is
defined in a neighborhood X � Rd of S. Then

DSuðxÞ ¼ DðuðcpðxÞÞÞ for x 2 S: ð2Þ

Note that the right-hand side is well-defined because u(cp(�)) can be evaluated at points both on and off the surface.
This result follows from the principles in [17].

Because the function u(cp(x)), known as the closest point extension of u, is used throughout this paper, we make the fol-
lowing definition.

Definition 2 (Closest point extension). Let S be a smooth surface in Rd. The closest point extension of a function u : S ! R to a
neighborhood X of S is the function v : X! R defined by

vðxÞ ¼ uðcpðxÞÞ: ð3Þ
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