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a b s t r a c t

We accelerate the computation of spherical harmonic transforms, using what is known as
the butterfly scheme. This provides a convenient alternative to the approach taken in the
second paper from this series on ‘‘Fast algorithms for spherical harmonic expansions”.
The requisite precomputations become manageable when organized as a ‘‘depth-first tra-
versal” of the program’s control-flow graph, rather than as the perhaps more natural
‘‘breadth-first traversal” that processes one-by-one each level of the multilevel procedure.
We illustrate the results via several numerical examples.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The butterfly algorithm, introduced in [10,11], is a procedure for rapidly applying certain matrices to arbitrary vectors.
(Section 3 below provides a brief introduction to the butterfly.) The present paper uses the butterfly method in order to
accelerate spherical harmonic transforms. The butterfly procedure does not require the use of extended-precision arithmetic
in order to attain accuracy very close to the machine precision, not even in its precomputations — unlike the alternative ap-
proach taken in the predecessor [15] of the present paper.

Unlike some previous works on the butterfly, the present article does not use on-the-fly evaluation of individual entries of
the matrices whose applications to vectors are being accelerated. Instead, we require only efficient evaluation of full columns
of the matrices, in order to make the precomputations affordable. Furthermore, efficient evaluation of full columns enables
the acceleration of the application to vectors of both the matrices and their transposes. On-the-fly evaluation of columns of
the matrices associated with spherical harmonic transforms is available via the three-term recurrence relations satisfied by
associated Legendre functions (see, for example, Section 5 below).

The precomputations for the butterfly become affordable when organized as a ‘‘depth-first traversal” of the program’s
control-flow graph, rather than as the perhaps more natural ‘‘breadth-first traversal” that processes one-by-one each level
of the multilevel butterfly procedure (see Section 4 below).

The present article is supposed to complement [11,15], combining ideas from both. Although the present paper is self-
contained in principle, we strongly encourage the reader to begin with [11,15]. The original is [10]. Major recent develop-
ments are in [4,17]. The introduction in [15] summarizes most prior work on computing fast spherical harmonic transforms;
a new application appears in [12]. These articles and their references highlight the computational use of spherical harmonic
transforms in meteorology and quantum chemistry. The structure of the remainder of the present article is as follows: Sec-
tion 2 reviews elementary facts about spherical harmonic transforms. Section 3 describes basic tools from previous works.
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Section 4 organizes the preprocessing for the butterfly to make memory requirements affordable. Section 5 outlines the
application of the butterfly scheme to the computation of spherical harmonic transforms. Section 6 describes the results
of several numerical tests. Section 7 draws some conclusions.

Throughout, we abbreviate ‘‘interpolative decomposition” to ‘‘ID” (see Section 3.1 for a description of the ID). The butter-
fly procedures formulated in [10,11] and the present paper all use the ID for efficiency.

2. An overview of spherical harmonic transforms

The spherical harmonic expansion of a bandlimited function f on the surface of the sphere has the form

f ðh;uÞ ¼
X2l�1

k¼0

Xk

m¼�k

bm
k Pjmjk ðcosðhÞÞeimu; ð1Þ

where (h,u) are the standard spherical coordinates on the two-dimensional surface of the unit sphere in R3, h 2 (0,p) and
u 2 (0,2p), and Pjmjk is the normalized associated Legendre function of degree k and order jmj (see, for example, Section 3.3
for the definition of normalized associated Legendre functions). Please note that the superscript m in bm

k denotes an index,
rather than a power. ‘‘Normalized” refers to the fact that the normalized associated Legendre functions of a fixed order are
orthonormal on (�1,1) with respect to the standard inner product. Obviously, the expansion (1) contains 4l2 terms. The com-
plexity of the function f determines l.

In many areas of scientific computing, particularly those using spectral methods for the numerical solution of partial dif-
ferential equations, we need to evaluate the coefficients bm

k in an expansion of the form (1) for a function f given by a table of
its values at a collection of appropriately chosen nodes on the two-dimensional surface of the unit sphere. Conversely, given
the coefficients bm

k in (1), we often need to evaluate f at a collection of points on the surface of the sphere. The former is
known as the forward spherical harmonic transform, and the latter is known as the inverse spherical harmonic transform.
A standard discretization of the surface of the sphere is the ‘‘tensor product”, consisting of all pairs of the form (hk,uj), with
cos(h0),cos(h1), . . ., cos(h2l�2),cos(h2l�1) being the Gauss–Legendre quadrature nodes of degree 2l, that is,

�1 < cosðh0Þ < cosðh1Þ < . . . < cosðh2l�2Þ < cosðh2l�1Þ < 1 ð2Þ

and

P0
2lðcosðhkÞÞ ¼ 0 ð3Þ

for k = 0,1, . . .,2l�2,2l � 1, and with u0,u1, . . .,u4l�3,u4l�2 being equispaced on the interval (0,2p), that is,

uj ¼
2p jþ 1

2

� �
4l� 1

ð4Þ

for j = 0,1, . . .,4l � 3,4l � 2. This leads immediately to numerical schemes for both the forward and inverse spherical har-
monic transforms whose costs are proportional to l3.

Indeed, given a function f defined on the two-dimensional surface of the unit sphere by (1), we can rewrite (1) in the form

f ðh;uÞ ¼
X2l�1

m¼�2lþ1

eimu
X2l�1

k¼jmj
bm

k Pjmjk ðcosðhÞÞ: ð5Þ

For a fixed value of h, each of the sums over k in (5) contains no more than 2l terms, and there are 4l � 1 such sums (one
for each value of m); since the inverse spherical harmonic transform involves 2l values h0,h1, . . .,h2l�2,h2l�1, the cost of eval-
uating all sums over k in (5) is proportional to l3. Once all sums over k have been evaluated, each sum over m may be eval-
uated for a cost proportional to l (since each of them contains 4l � 1 terms), and there are (2l)(4l � 1) such sums to be
evaluated (one for each pair (hk,uj)), leading to costs proportional to l3 for the evaluation of all sums over m in (5). The cost
of the evaluation of the whole inverse spherical harmonic transform (in the form (5)) is the sum of the costs for the sums
over k and the sums over m, and is also proportional to l3; a virtually identical calculation shows that the cost of evaluating
of the forward spherical harmonic transform is also proportional to l3.

A trivial modification of the scheme described in the preceding paragraph uses the fast Fourier transform (FFT) to evaluate
the sums over m in (5), approximately halving the operation count of the entire procedure. Several other careful consider-
ations (see, for example, [2,13]) are able to reduce the costs by 50% or so, but there is no simple trick for reducing the costs of
the whole spherical harmonic transform (either forward or inverse) below l3. The present paper presents faster (albeit more
complicated) algorithms for both forward and inverse spherical harmonic transforms. Specifically, the present article pro-
vides a fast algorithm for evaluating a sum over k in (5) at h = h0,h1, . . .,h2l�2,h2l�1, given the coefficients bm

jmj; b
m
jmjþ1; . . . ;

bm
2l�2; b

m
2l�1, for a fixed m. Moreover, the present paper provides a fast algorithm for the inverse procedure of determining

the coefficients bm
jmj; b

m
jmjþ1; . . . ; bm

2l�2; b
m
2l�1 from the values of a sum over k in (5) at h = h0,h1, . . .,h2l�2,h2l�1. FFTs or fast discrete

sine and cosine transforms can be used to handle the sums over m in (5) efficiently. See [12] for a detailed summary and
novel application of the overall method. The present article modifies portions of the method of [12,15], focusing exclusively
on the modifications.
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