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a b s t r a c t

A numerical method based on sinc collocation approximation for a class of nonlinear
weakly singular Volterra integral equations of a second kind with non-smooth solution
is given. The numerical method given here combines a sinc collocation method with an
explicit iterative process that involves solving a nonlinear system of equations. We provide
an error analysis for the method. It is shown that the approximate solution converges to
the exact solution at the rate of
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Þ, where M is the number of collocation

points and c is some positive constant. Some numerical results for several test functions
are given to confirm the accuracy and the ease of implementation of the method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many physical, chemical, and biological problems are modeled as nonlinear Volterra integral equations, such as
reaction–diffusion problems, crystal growth, models describing the propagation of a flame (see e.g. [23,10] and especially
[14] for many physical and engineering applications), mathematical models describing the behavior of viscoelastic mate-
rials in mechanics, superfluidity problems, and some newer applications on the study of soft tissues like mitral valves of
the aorta in human heart (see [9] and the references therein).

This work is concerned with study of the numerical analysis of a class of nonlinear Volterra integral equation of a second
kind which has a weakly singular kernel of the form

uðxÞ ¼ f ðxÞ þ
Z x

a

Kðx; tÞ
ðx� tÞa

upðtÞdt; ð1Þ

where a 6 x, t 6 b, p > 1, and 0 < a < 1. Eq. (1) can arise in connection with some heat conduction problems with various class
of mixed-type boundary conditions. For example, Lighthill [15] was among the pioneers to derive an integral equation that
can be transformed into the above equation which describes the temperature distribution of the surface of a projectile mov-
ing through a laminar layer when f ðxÞ ¼ 1; Kðx; tÞ ¼ ð�

ffiffiffi
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=pÞt1=3; a ¼ 2=3; p ¼ 4 and a = 0, b = 1. Even for analytic functions
f(x) and K(x, t), it is well known (e.g. see [5], and [1]) that derivative of the solution of the above equation, u0(x) is singular at
the left edge point of the interval of integration, [a,x], and this is expected to cause a loss in global convergence of a collo-
cation method. In the case of Eq. (1), u0(x) behaves as (x � a)�a as x ? a+.
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Numerical approximations methods such as quadrature rules, finite differences, finite elements, and so on are generally
use polynomials as basis functions to obtain approximate solutions that are sufficiently accurate in region where the func-
tion to be approximated is smooth (see e.g., [8,13]). However, such methods fail significantly in a neighborhood of singular-
ities of the function. On the other hand, the numerical approximations obtained by using Whittaker’s cardinal function yield
much better results than those obtained by methods using polynomials in the case when singularities are present at an end-
point of the interval. These methods, however, may or may not yield better results in the absence of singularities. For a com-
prehensive study of numerical methods for Volterra integral equations we refer to [16,4,5], and the references therein, for
single exponential sinc approximation methods to [17,26], and [27], for double exponential sinc transformation methods
to [21,28] and [29].

In the present paper we develop a sinc collocation method for the nonlinear integral Eq. (1) that is based on the work of
[24] for linear integral equation. [24] points out that ‘‘the extension of the method to nonlinear integral equations seems to
be a more challenging task at this point.” To our knowledge, no such extension is extant in the literature for the method gi-
ven in [24]. Recently, [21] modified the method of [24] using a double exponential transformation for the linear case again
and most recently [22] extending the method [24] to Fredholm case. In [24] the error analysis is based on an ambiguous lim-
itation such as for all ‘‘M in a practical range,” where M is the number of collocation points. In this paper, we set up the equa-
tions that gives the approximate solution for the integral equation in such a way that avoids such limitation. This is a sharp
contrast between our approach and those in [24] and [21]. This paper is organized as follows. In Section 2 we present some
definitions and preliminary results on sinc collocation method of single exponential function. Section 3 is devoted to a de-
tailed derivation of our numerical algorithm, convergence and error analysis. Section 4 contains some numerical examples
illustrating the applications of method described here that considers the rule of number of collocations. We end the paper
with some closing remarks and conclusions.

2. Some preliminary results using sinc functions

In this section, we state some basic results about sinc function approximation. These important properties will enable us
to solve the nonlinear singular Volterra integral equation. The basic sinc function is defined as

sincðxÞ ¼
sin px
px ; x – 0;

1; x ¼ 0:

(
ð2Þ

Let j be an integer and h be a positive number. We define the jth translate of sinc function by

Sðj; hÞðxÞ � sincðx=h� jÞ ð3Þ

for step size h, evaluated at x. Given a function f defined and bounded for all x in (�1,1), the Whittaker’s cardinal function of
f is defined by

Cðf ;hÞðxÞ ¼
X1

j¼�1
f ðjhÞSðj; hÞðxÞ: ð4Þ

Now, we want to extend the approximations on R to the finite interval (a,b). Since the integral equation is defined over a
finite interval, and the sinc function maps R onto a finite interval, we need some transformation /(x) that maps a finite inter-
val (a,b) onto R. Let

/ðzÞ ¼ log
z� a
b� z

� �
; ð5Þ

be a conformal map which carries the eye-shaped complex domain

D ¼ z : arg
z� a
b� z

� ���� ��� < d < p
n o

ð6Þ

onto the open infinite strip

Dd ¼ fz 2 C : jImðzÞj < d < pg: ð7Þ

Note that at x = kh with k an integer, the translate of sinc reduces to the Kronecher delta, i.e., S(j,h)(kh) = sinc (k � j) = dkj. We
define the basis functions on (a,b) by

Sðj; hÞð/ðxÞÞ ¼ sincð/ðxÞ=h� jÞ: ð8Þ
Setting

/ðxkÞ ¼ log
xk � a
b� xk

� �
¼ kh ð9Þ

we get

xk ¼ /�1ðkhÞ ¼ aþ bekh

1þ ekh
: ð10Þ
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