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a b s t r a c t

In this paper we prove stability of Robin solid wall boundary conditions for the compress-
ible Navier–Stokes equations. Applications include the no-slip boundary conditions with
prescribed temperature or temperature gradient and the first order slip-flow boundary
conditions. The formulation is uniform and the transitions between different boundary
conditions are done by a change of parameters. We give different sharp energy estimates
depending on the choice of parameters.

The discretization is done using finite differences on Summation-By-Parts form with
weak boundary conditions using the Simultaneous Approximation Term. We verify conver-
gence by the method of manufactured solutions and show computations of flows ranging
from no-slip to almost full slip.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

There has recently been a development of stable boundary [1,2] and interface [3] conditions of a specific form for the
compressible Navier–Stokes equations. This paper extends the result in [2] to more general solid wall boundary conditions
and includes sharp energy estimates. While [2] deals only with the no-slip boundary conditions, we will provide a uniform
formulation which includes the no-slip boundary conditions with prescribed temperature or temperature gradient and slip-
flow boundary conditions or any combination thereof.

The tools that we will use to obtain a uniform formulation together with proof of stability are finite difference approx-
imations on Summation-By-Parts (SBP) form together with the Simultaneous Approximation term. This method has the ben-
efit of being stable by construction for any linear well-posed Cauchy problem [4,5] and the robustness has been shown in a
wide range of applications [5–9].

The first derivative is approximated by ux � Dv = P�1Qv, where v is the discrete grid function, D is the differentiation
matrix, P = PT > 0 defines a norm by kvk2 = vTPv and Q has the SBP property Q + QT = B = [�1,0, . . . ,0,1]T, see [10,11] for details
about these operators.

There exist operators accurate of order 2, 4, 6 and 8 and the stability analysis does not depend on the order of accuracy of
the operators. We will pose our equations on conservative form and hence we do not need an operator approximating the
second derivative. Operators approximating the second derivative with constant coefficients are derived in [11] and have
recently been developed for variable coefficients problems in [12].
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The boundary conditions will be imposed weakly using the Simultaneous Approximation Term (SAT). The SAT term is
added to the right-hand-side of the discretized equations as a penalty term which forces the equation towards the boundary
conditions. Together the SBP and SAT technique provide a tool for creating stable approximations for well-posed initial-
boundary value problems. The relation between weak and strong boundary conditions in terms of accuracy is discussed
in [13].

2. The Navier–Stokes equations

2.1. Continuous case

We consider the two-dimensional Navier–Stokes equations on conservative form

qt þ Fx þ Gy ¼ 0; ð1Þ

where

F ¼ FI � eFV ; G ¼ GI � eGV : ð2Þ
The superscript I denotes the inviscid part of the fluxes and V the viscous part. The components of the solution vector are
q = [q,qu,qv,e]T which are the density, x- and y-directional momentum, respectively and energy. The components of the
fluxes are given by

FI ¼ ½qu; pþ qu2;quv ;uðpþ eÞ�T ;
GI ¼ ½qv ;quv ;pþ qv2; vðpþ eÞ�T ;
FV ¼ ½0; sxx; sxy;usxx þ vsxy � Q x�T ;
GV ¼ ½0; sxy; syy;usyx þ vsyy � Q y�T ;

ð3Þ

where p is the pressure, Pr the Prandtl number, c the ratio of specific heat and Q = �jT is the thermal conductivity times the
temperature according to Fourier’s law. The stress tensors are given by

sxx ¼ 2l @u
@x
þ k

@u
@x
þ @v
@y

� �
; syy ¼ 2l @v

@y
þ k

@u
@x
þ @v
@y

� �
; sxy ¼ syx ¼ l @u

@y
þ @v
@x

� �
; ð4Þ

where l and k are the dynamic and second viscosity, respectively.
All the equations above have been non-dimensionalized as

u ¼ u�

c�1
; v ¼ v�

c�1
; q ¼ q�

q�1
; T ¼ T�

T�1
; p ¼ p�

q�1 c�1
� �2 ; e ¼ e�

q�1 c�1
� �2 ; k ¼ k�

l�1
; l ¼ l�

l�1
; ð5Þ

where the ⁄-superscript denotes a dimensional variable and the 1-subscript the freestream value. In (2) we have e ¼ Ma
Re

where Ma is the Mach-number and Re ¼ q�1u�1L�1
l�

inf ty
is the Reynolds-number with L�1 being a characteristic length scale.

The equations as stated in (1) is a highly non-linear system of equations. The well-posedness and stability conditions that
will be derived in this paper will be based on a linear symmetric formulation.

We freeze the coefficients at some constant state �w ¼ �q; �u; �v ; �p½ �T and linearize as ~w ¼ �wþw0 where w0 = [q,u,v,p]T is a
perturbation around the constant state �w. This yields an equation with constant matrix coefficients. Next we transform to
primitive variables and use the parabolic symmetrizer derived in [14] to get the linear, constant coefficient and symmetric
system

wt þ Awx þ Bwy ¼ e ðC11wx þ C12wyÞx þ ðC21wx þ C22wyÞy
� �

; ð6Þ

where the symmetrized variables are

w ¼
�cffiffifficp �q

q;u;v ; 1
�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1Þ

p T

" #T

: ð7Þ

All matrix coefficients can be found in [14] but we restate them in Appendix A for convenience.
We will use the energy method to determine the well-posedness of (6). The energy norm in which we will derive our

estimates is defined by

kwk2 ¼
Z

X
wT wdX: ð8Þ
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