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in three steps: The underlying adjoint partial differential equations and boundary condi-
tions for the frozen-turbulence Reynolds-averaged Navier-Stokes equations are considered
in the first step. In step two, the adjoint discretisation is developed from the primal,
unstructured finite-volume discretisation, such that adjoint-consistent approximations to
the adjoint partial differential equations are obtained following a so-called hybrid-adjoint
approach. A unified, discrete boundary description is outlined that supports high- and low-
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Finite-volume method Reynolds number turbulent wall-boundary treatments for both the adjoint boundary con-
Wall function dition and the boundary-based gradient formula. The third component focused in the
Dual consistency development of the industrial adjoint CFD method is the adjoint counterpart to the primal

pressure-correction algorithm. The approach is verified against the direct-differentiation
method and an application to internal flow problems is presented.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Today, decades after the pioneering work of Pironneau [40] and Jameson [18], adjoint methods have reached a wide and
growing popularity in applied computational fluid dynamics (CFD) wherever detailed sensitivity information of integral out-
put quantities is required. Though the development of adjoint methods notoriously lags behind the primal CFD, the adjoint
sensitivity analysis is successfully used for optimal shape design [19,7,21,1,14,20,44,32,37], topology optimisation
[2,10,38,15,37], active and passive flow control [5,26,4], goal-oriented error estimation and grid adaptation [12,16] or con-
vergence error correction [31,29]. These applications are different in the control, but in the majority of works the same engi-
neering output quantities are considered, such as projections of forces and moments [21,1,14,32,36,44,4,16], energy or
power-related quantities [37,49,50], homogeneity criteria [38,37,45] or (weighted) deviations [19,21] from predefined
states. The adjoint problem can be either devised via the continuous [40,18,19,21,43,4,37,49] or the discrete-adjoint
[1,7,33,34,13,32,36,16] strategy.

1.1. Discretisation

In the continuous-adjoint approach, the governing equations and objective functionals are linearised on the level of partial
differential equations (PDE) and the corresponding adjoint PDE are developed via integration by parts prior to discretisation.
The primal problem being the fluid-dynamic differential constraints (Navier-Stokes equations) and the integral objective
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functional must be compatible so that a continuous-adjoint formulation exists; this is particularly important in the context
of boundary conditions and boundary-based objectives. Subsequently, a suitable adjoint discretisation must be chosen,
which is often passed over in the literature. Unlike the primal discretisation schemes which have been developed and tuned
over the past decades, a comparable experience is usually not available for the adjoint problem. Unless derived with due care
(e.g.[28]), the discretisation of the adjoint PDE will not match the transposed (adjoint) of the linearised primal discretisation,
so that the calculated derivative will not be the exact derivative of the discrete objective functional calculated by the primal
solver on a finite mesh. Simplified adjoint schemes that are of reduced complexity or lower order than the primal discret-
isation can be chosen to reduce the development time for the adjoint field and boundary operators. Adjoint discretisation
schemes can be constructed such that the adjoint solution is stabilised. Moreover, the continuous-adjoint method suggests
a boundary-based gradient formula, which is very popular in conjunction with unstructured grids [8,20,43,37]; in that case
the boundary deformation does not have to be propagated to the interior mesh.

Alternatively, when a discrete-adjoint strategy is pursued, the discrete-adjoint system is directly derived from the linear-
ised discretisation of the primal problem via summation by parts. By definition the exact derivative of the discrete problem is
calculated. The discrete-adjoint approach supersedes the search for appropriate discretisation schemes for the adjoint PDE.
To reduce the effort associated with a complete linearisation and summation by parts, a simplified version of the primal dis-
crete system can be addressed [6,39]. In the discrete-adjoint approach incompatibilities in the discretisation of the primal
problem are directly inherited to the discrete-adjoint problem and can result in an ill-posed discrete-adjoint formulation
[28,17]. This may either be a consequence of incompatible definitions—e.g. of governing flow equations and objective func-
tionals—so that a continuous-adjoint representation would not even exist for that problem, or it may be due to inconsistent
discretisation schemes though a continuous-adjoint counterpart could generally be formulated. Inconsistent discretisations,
for example of the primal boundary conditions and the boundary-defined objective functional, can lead to invalid discrete-
adjoint boundary operators [28,30] inducing irregularities into the adjoint solution next to the most sensitive area where the
objective functional is defined. This, in turn, can deteriorate the sensitivity prediction. A possible implication that may be
already observed in the primal problem is a poor mesh convergence in terms of discrete integral criteria which are incom-
patible with the flow discretisation [17].

In order to bring together the information from both the continuous-and the discrete-adjoint method, a hybrid-adjoint
strategy is pursued in this study: The adjoint PDE are derived in the first step. In the second step, the adjoint discretisation
schemes for the individual terms of the adjoint PDE are constructed via summation by parts from the primal discretisation.
This strategy allows to identify appropriate discretisation schemes for the adjoint PDE. Moreover, the analysis of the adjoint
problem can reveal inconsistencies within the primal discretisation and give a feedback to improve its deficiencies. Ideally, if
the schemes obtained in the discrete-adjoint way are a consistent approximation to the adjoint PDE, the discretisation
schemes obtained in the sequence “derive-then-discretise” equal their “discretise-then-derive” counterparts.

1.2. Solution algorithm

Having found an appropriate adjoint discretisation, an adjoint algorithm is required to solve the problem numerically. It is
possible (a) to use different solution schemes for the discretised primal and adjoint problems [44,35,39], (b) to reuse the
modified primal algorithm to solve the adjoint problem (e.g. [22,49,46]), or (c) to traverse the primal algorithm in reverse.
Approaches (a) and (b) can be followed with an adjoint discretisation won via the continuous-adjoint or the discrete-adjoint
approach. Option (c) is usually pursued by reverse algorithmic differentiation [11,33,13,34] on the code level, i.e. in the dis-
crete-adjoint way. Alternatively, the solution scheme can be reversed manually [36,32].

This study is concerned with unstructured finite-volume schemes and segregated, pressure-based solution strategies
widely used in industry to solve incompressible flow problems (e.g. [3,9]). Such schemes are different from the density-
based, coupled solution algorithms predominantly used in aerodynamics and complicate the development of adjoint solu-
tion schemes in several ways:

o The discrete system of conservation equations for momentum and continuity is transformed into a system of momentum
and pressure (correction) equations.

e The equation systems are solved individually in an iterative pressure-projection algorithm, so that an approximation to
the Jacobian matrix of the coupled system is available at no time. To reuse the primal solution strategy for the adjoint
problem, an iterative sequence of transposed operations is required.

e An incomplete Picard linearisation for the convection of momentum is used in the semi-implicit flow solver. A complete
linearisation must be supplemented in transposed form in the adjoint code. An explicit coupling is required in the corre-
sponding segregated, adjoint solution algorithm.

e Compact finite-volume schemes are easily transposed via summation by parts. To achieve second-order accuracy on
unstructured grids, an explicit deferred-correction based on an extended molecule is often applied, e.g. to approximate
the full viscous stress tensor, to correct non-orthogonality errors, or for (limited) higher-order interpolation of the con-
vective fluxes.

For these reasons, the purpose of this study was to exploit the knowledge of both the continuous-adjoint (Section 2) and
the discrete-adjoint method. Manageable, consistent-adjoint schemes suitable for adjoint production codes are derived in a
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