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a b s t r a c t

This paper discusses the topology optimization of unsteady incompressible Navier–Stokes
flows. An optimization problem is formulated by adding the artificial Darcy frictional force
into the incompressible Navier–Stokes equations. The optimization procedure is imple-
mented using the continuous adjoint method and the finite element method. The effects
of dynamic inflow, Reynolds number and target flux on specified boundaries for the opti-
mal topology of unsteady Navier–Stokes flows are presented. Numerical examples demon-
strate the feasibility and necessity of this topology optimization method for unsteady
Navier–Stokes flows.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Layout optimization of fluidic devices is an interesting field with respect to theory and application. The goal of optimiza-
tion is to achieve better performance for a user specified objective that is related to certain characteristics of fluidic prob-
lems. Usually, layout optimization is categorized into shape optimization and topology optimization. Shape optimization
improves the performance of a fluidic device by adjusting the positions of structural boundaries, keeping the topology of
the structure unchanged. Topology optimization can optimize the shape and the topology of structures simultaneously.
Therefore, topology optimization is a more general optimization technique than shape optimization. Currently, the density
type method [1,2] and level set method [3–6] have been developed for implementing of topology optimization. Topology
optimization by the density method was first used to design stiffness and compliance mechanisms [7–10] and has been
extended to multiple physical problems, such as acoustic, electromagnetic, fluidic, optical and thermal problems [11–17].
Topology optimization by the density method for fluidic problems was first researched for Stokes flows [12,18,19] and
Darcy–Stokes flows [20,21]. It was later extended to Navier–Stokes flows [22–26] and non-Newtonian flows [27]. Addition-
ally, the topology optimization method has been applied to design fluidic devices [28–31]. The level set method, pioneered
by Osher and Sethian [32], accomplishes the change of topology by evolving and merging the zero contour of the level set
function. This method provides a general way to track the implicit interface between two phases, and it has been applied to
fluidic shape and topology optimization [25,26]. One of the major advantages of the level set method lies in expressing con-
tinuously moving interfaces and abstracting the material domains that correspond to the structural topology. Recently, it has
been observed that the conventional level set method may be inadequate for the cases in which the initial shape of the
structure has fewer holes than the optimal geometry [4], especially in two-dimensional cases. The above difficulty can be
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overcome using topological sensitivity, which was introduced by Sokolowski and Zochowski [33] for linear elasticity and
that has been extended to several other linear and nonlinear physical problems [34–37]. In particular, the topological sen-
sitivity has been researched for steady Stokes flows [38–41] and Navier–Stokes flows [42]. To the best of the authors’ knowl-
edge, there is no formally published paper discussing the topological sensitivity for unsteady Navier–Stokes flows. Therefore,
the application of the level set method to topology optimization of the unsteady flows is limited.

Until recently, the topology optimization of fluidic flows has focused primarily on steady flows. In contrast, unsteady
flows are widespread in reality, and the optimization of unsteady flows using the shape optimization method has been re-
searched [43–45]. As such, it is desirable to extend topology optimization to the area of unsteady Navier–Stokes flows. In this
paper, the density type topology optimization method is extended to unsteady incompressible Navier–Stokes flows at low
and moderate Reynolds numbers based on work by Borrvall and Petersson [12] and Gersborg-Hansen et al. [22]. The
optimization problem with a general objective is analyzed by the continuous adjoint method. Recently, Kreissl et al.
implemented the topology optimization of unsteady flows [46]. In Kreissl’s work, the optimization problem is analyzed using
the stabilized SUPG and PSPG finite element formulation and the corresponding discretized adjoint equations. In this paper,
the topology optimization problem with more general objectives is analyzed using the continuous adjoint method. Based on
the Navier–Stokes equations and the derived continuous adjoint equations, the optimization can be implemented by
choosing any stable spatial discretization method and adaptive temporal discretization method, such as the finite difference
method, the finite element method or the finite volume method. In this paper, the numerical discretization of the Navier–
stokes equations and the adjoint equations is implemented using the standard finite element method with Taylor-Hood
element.

This paper is organized as follows: the variational problem of topology optimization for unsteady incompressible Navier–
Stokes flows is stated in Section 2; the continuous adjoint equations and adjoint sensitivity for the optimization objective are
derived in Section 3; the numerical implementation of the optimization method using the standard finite element method is
discussed in Section 4; and several numerical examples are presented in Section 5.

2. Topology optimization problem of unsteady incompressible Navier–Stokes flows

The dynamic properties of velocity and pressure for incompressible fluidic flows can be expressed using the incompress-
ible Navier–Stokes equations as [47]

q @u
@t � gr � ðruþruTÞ þ qðu � rÞuþrp ¼ f; in Q

�r � u ¼ 0; in Q
ð1Þ

where u is the fluidic velocity; p is the fluidic pressure; q is the fluidic density; g is the fluidic viscosity; f is the body force
loaded on the fluid; and t is the time. Q = (0,T) �X, where (0,T) is the computational time interval and X is the computa-
tional domain. To solve a transient problem, an initial condition is needed

uð0;xÞ ¼ u0ðxÞ; in X ð2Þ

where u0(x) satisfies the incompressible condition r�u0 = 0. The commonly used boundary conditions for incompressible
Navier–Stokes equations include the Dirichlet and Neumann type boundary conditions

u ¼ uDðt; xÞ; on RD ð3Þ
½�pIþ gðruþruTÞ�n ¼ gðt; xÞ; on RN ð4Þ

where uD and g are the specified velocity and stress distribution on the boundaries CD and CN; n is the outward unit normal
vector on oX; RD = (0,T) � CD; and RN = (0,T) � CN. Specifically, the no-slip boundary is a particular Dirichlet type boundary
condition where uD = 0, and the open-boundary on the outlet can be expressed by the Neumann type boundary condition as
g = 0. In topology optimization of the Navier–Stokes flow, the body force can be expressed as [12,22]

f ¼ �au ð5Þ

where a is the impermeability of a porous medium. Its value depends on the optimization design variable c [12,22]

aðcÞ ¼ amin þ ðamax � aminÞ
qð1� cÞ

qþ c
ð6Þ

where amin and amax are the minimal and maximal values of a respectively, and q is a real and positive parameter used to
adjust the convexity of the interpolation function in Eq. (6). The value of c can vary between zero and one, where c = 0 cor-
responds to an artificial solid domain and c = 1 to a fluidic domain, respectively. Usually, amin is chosen as 0, and amax is cho-
sen as a finite but high number to ensure the numerical stability of the optimization and to approximate a solid with
negligible permeability [22,23]. When solving transient incompressible Navier–Stokes equations, the design variable c is
time independent because the layout of fluidic domain is kept unchanged.

Based on the above description, the topology optimization problem for a unsteady incompressible Navier–Stokes flow can
be formulated as
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