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a b s t r a c t

The spectral/hp element method can be considered as bridging the gap between the
– traditionally low-order – finite element method on one side and spectral methods on
the other side. Consequently, a major challenge which arises in implementing the
spectral/hp element methods is to design algorithms that perform efficiently for both
low- and high-order spectral/hp discretisations, as well as discretisations in the interme-
diate regime. In this paper, we explain how the judicious use of different implementation
strategies can be employed to achieve high efficiency across a wide range of polynomial
orders. Furthermore, based upon this efficient implementation, we analyse which spec-
tral/hp discretisation (which specific combination of mesh-size h and polynomial order
P) minimises the computational cost to solve an elliptic problem up to a predefined level
of accuracy. We investigate this question for a set of both smooth and non-smooth
problems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The spectral/hp element method combines the geometric flexibility of classical h-type finite element or finite volume
techniques with the desirable resolution properties of spectral methods. In this approach a polynomial expansion of order
P is applied to every elemental domain of a coarse finite element type mesh. These techniques have been applied in many
fundamental studies of fluid mechanics [1] and more recently have gained greater popularity in the modelling of wave-based
phenomena such as computational electromagnetics [2] and shallow water problems [3] – particularly when applied within
a Discontinuous Galerkin formulation.

Spectral/hp element methods can be considered as a high-order extension of classical – traditionally low-order – finite
element methods where convergence is not only possible through reducing the characteristic mesh-size h but also through
increasing the local polynomial order P within an elemental subdomain. However, the concept of high and low-order discret-
isations can mean very different things to different communities. For example, the seminal works by Zienkiewicz and Taylor
[4] and Hughes [5] list examples of elemental expansions only up to third or possibly fourth-order, implying that these
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orders are considered to be high-order for the traditional h-type finite element community. In contrast the text books of the
spectral/hp element community [6–9] typically show examples of problems ranging from a low-order bound of minimally
fourth-order up to anything ranging from 10th to 15th order polynomial expansions. On the other end of the spectrum, prac-
titioners of global spectral methods [10] would probably consider a 16th order global expansion to be relatively low-order
approximation.

One could wonder whether these different definitions of low- and high-order is just inherent to the tradition and lore
of each of the communities or whether there are more practical reasons for this distinct interpretation. Proponents of low-
er order methods might highlight that some problems of practical interest are so geometrically complex that one cannot
computationally afford to use high-order techniques on the massive meshes required to capture the geometry. Alterna-
tively, proponents of high-order methods highlight that if the problem of interest can be captured on a computational do-
main at reasonable cost then using high-order approximations for sufficiently smooth solutions will provide a lower
accuracy for a given computational cost. If one however probes even further it also becomes evident that the different
communities choose to implement their algorithms in a different manner. For example the standard h-type finite element
community will typically uses techniques such as sparse matrix storage formats (where only the non-zero entries of a glo-
bal matrix are stored) to represent a global operator. In contrast the spectral/hp element community acknowledges that
for higher polynomial expansions more closely coupled computational work takes place at the individual elemental level
and this leads to the use of elemental operators rather than global matrix operators. In addition the global spectral method
community often make use of the tensor-product approximations where products of one-dimensional rules for integration
and differentiation can be applied. From the results in this paper, it will appear that each of the different implementation
strategies will perform poorly when applied outside the aforementioned polynomial regimes typically adopted by the dif-
ferent communities, hinting that the traditional views of low- and high-order may be have been strengthened by these
practical barriers.

In this paper, we are therefore lead to ask when we should adopt these different implementation strategies if we are to
allow the order of our spatial approximations to vary from P = 1 up to say P = 15? We note that analytic estimates of com-
putational work in this polynomial regime are difficult if not impossible to establish since the computational effort is
highly dependent on hard to predict hardware characteristics such as memory management and caching effect as well
as optimised linear algebra packages such as BLAS and LAPACK. We therefore will mainly follow a computational approach
to assess the efficiency of the different implementation strategies. The support of various implementation strategies with-
in a spectral/hp code will allow the user to cross the community dependent barriers of low- and high-order in an efficient
way such as the aforementioned example of P = 4 (the high-order limit for traditional finite elements and the low-order
limit for spectral/hp elements). This surrounding polynomial regime (2 < P < 6) is however potentially an optimal/desirable
range for applications where the mesh resolution is such that increasing polynomial order leads to the onset of rapid/spec-
tral convergence. This level of resolution might be necessary to capture, for example, a complex geometry. The benefit of
intermediate polynomial resolution will however only be observed if one can efficiently implement these polynomial
discretisations.

Finally, we can also question whether it is sufficient to know which implementation strategy is optimal in terms
of CPU time for a specific polynomial order discretisation? Probably a more pertinent question is consider given the
most efficient implementation, what is the best spectral/hp discretisation to obtain a fixed error for a minimal computational
cost? Since computational cost is impacted by different discretisation methodologies such as element size h, polynomial
order P, adaptive refinement r [11] or even the continuity of the approximation k [12], there are clearly many factors
to consider. To help reduce this extensive parameter space in this paper we will restrict ourselves to just h and P refine-
ments leading to the question: which specific combination of mesh-size h and polynomial order P requires the minimal
computational cost (i.e. run-time) to solve a problem up to a predefined accuracy? We will investigate this question
for a set of both smooth and non-smooth elliptic problems. To outline the scope of this study, we must also consider
which part of the implementation we look to optimise. In the solution of time-dependent partial differential equations,
such as those that arise in fluid mechanics, electromagnetics and oceanography, it is often the case that you can
have the repeated application of a matrix problem. However, in a steady partial differential equation which might
arise in structural mechanics the cost of setting up and the matrix problem may be as equally important as the
solution time. In the following analysis we will adopt the first case and assume the repeated application of the
matrix operators is the dominant cost. As a result, we aim to optimise the evaluation of such matrix operators for
minimal run-time, thereby neglecting any matrix construction time. In addition, we do not consider any memory
constraints.

The paper is organised as follows: in Section 2, we begin by introducing the spectral/hp element method and highlighting
some of its aspects relevant to the topic of this paper. In Section 3, we explain how a local operator can be efficiently eval-
uated for both low- and high-order expansions. Therefore, we first introduce and discuss three different implementation
strategies using global matrices, local matrices of a sum factorisation technique. We then provide theoretical cost estimates
for each strategy. Next we investigate the effect of the different strategies on the actual run-time by a set of computational
tests and analyse which strategy should be selected depending on the polynomial order. Subsequently, in Section 4 we look
for the optimal combination of mesh-size h and polynomial order P that solves a certain problem up to a predefined level of
accuracy in a minimal amount of time for four different test-problems. Finally Section 5 summarises and concludes the pre-
sented work.
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