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a b s t r a c t

We consider geometric biomembranes governed by an L2-gradient flow for bending energy
subject to area and volume constraints (Helfrich model). We give a concise derivation of a
novel vector formulation, based on shape differential calculus, and corresponding discret-
ization via parametric FEM using quadratic isoparametric elements and a semi-implicit
Euler method. We document the performance of the new parametric FEM with a number
of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while
exhibiting large deformations.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Lipids consist of a hydrophilic head group and one or more hydrophobic hydrocarbon tails. When lipid molecules are im-
mersed in aqueous environment at a proper concentration and temperature they spontaneously aggregate into a bilayer or
membrane that forms an encapsulating bag called vesicle. This phenomenon is of interest in biology and biophysics because
lipid membranes are ubiquitous in biological systems, and an understanding of vesicles provides an important element to
understand real cells. Canhan and Helfrich [1,2] were the first to introduce over 35 years ago, a model for the equilibrium
shape of vesicles consisting of minimization of the bending elasticity or curvature energy. The structure of lipid membranes
is that of a two dimensional, oriented, incompressible and viscous fluid. Phenomenological [1,2] and rigorous continuum
mechanical [3–5] approaches agree that the membrane C is endowed with a bending or elastic energy. The simplest form
of this energy is
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where h and k are the mean and Gauss curvature, respectively; and j and jG are the constant bending coefficients. For closed
surfaces without topological changes, the Gauss–Bonnet theorem [6, Section 8.5] yields the equivalence (up to scaling) be-
tween the above energy and the ‘‘Willmore” energy [7] defined by

WðCÞ :¼ 1
2

Z
C

h2
: ð1Þ

If the temperature and osmotic pressure of the vesicle do not change, the enclosed volume and surface area can be as-
sumed to be conserved. The former is a consequence of the impermeability of the membrane. The latter is because the num-
ber of molecules remains fixed in each layer and the energetic cost of stretching or compressing the membrane is much
larger than the cost of bending deformations. Refer to [8–10] for more details.

In this work, we consider the Willmore energy model (1) with isoperimetric area and volume constraints. The combined
effect of the bending elasticity with the surface and volume constraints generates a great variety of non-spherical shapes, in
contrast to the characteristic spherical equilibrium shapes of simple liquids which are governed by isotropic surface tension.
Describing the membrane by quantities all defined on the surface (energy, area and volume), equilibrium shapes are ob-
tained as stationary states of a geometric evolution equation. For other aspects more related to the dynamics, the effect
of the surrounding fluid should be taken into account. We study this effect in [11] and compare it with the geometric model.

Formally, the geometric model is a gradient flow for a suitable shape functional JðCÞ: find the evolution of the surface
C ¼ CðtÞ such that its velocity v is given by

hv ;wi ¼ �dJðC; wÞ 8w; ð2Þ

where dJðC; wÞ is the shape derivative of JðCÞ in the direction of w and h�; �i is a scalar product determining the type of flow
[12].

The shape derivative of the Willmore energy (1) in three dimensions is given by

dWðC; wÞ ¼
Z

C
ð�DCh� 1

2
h3 þ 2khÞw; ð3Þ

where w ¼ m �w is the normal component of w. The L2-gradient flow (i.e. hv ;wi :¼
R
C v �w) obtained from (2) with J ¼W ,

namely using (3), is known as the Willmore flow and is a highly nonlinear 4th order geometric partial differential equation
(PDE) on CðtÞ. We refer to [13] for a general discussion of discrete gradient flows.

Parametric finite element methods (FEM) have already been proposed for the Willmore flow without constraints [14,15]
and with constraints [16]. A chief difficulty is to make sense of Gauss curvature k within a variational framework. The
scheme of Rusu [15] is the first of this class for (1) without constraints. That of Dziuk [14] copes with undesirable tangential
motions observed in Rusu’s scheme near equilibrium and presents a stability estimate for special initial conditions. In both
cases, the formulation involves vector quantities (position and curvature). In contrast, Garcke et al. [16] present a scalar
scheme for (1) with constraints and evolve the interface in the direction of an averaged normal. The latter is somewhat re-
lated to the method of Bänsch et al for surface diffusion [17]. All these schemes are implemented with piecewise linear ele-
ments and exhibit difficulties to start; they are due to geometric inconsistency, a new concept that we discuss briefly in
Section 4.4 and fully in [18]. Alternative techniques are also available in the literature, for instance the phase field approach
[19,20], threshold dynamics [21] and level set method [22]. An advantage of our parametric method over the alternatives is
the capability to easily increase the approximation order of the interface. In addition, quadratics are more robust than linears
regarding mesh quality; this adds to several other important features for fourth order problems discussed in Section 4.5. Fi-
nally note that the number of degrees of freedom associated with the parametric approach is that of a 2D problem, whereas
for the phase field or level set methods a full 3D problem is to be solved, perhaps with the help of adaptive meshes or narrow
band methods to improve efficiency. These advantages are at the expense of difficulties in executing topological changes,
especially in 3D.

In this paper, we give a rather concise derivation of a novel vector formulation for (1) with constraints that hinges on
shape differential calculus [23,12]. In fact, we derive the following vector form of the shape derivative (Theorem 3.1)

dWðC; /Þ ¼
Z

C
rC/ � rCh�

Z
C
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2

Z
C

divChdivC/; ð4Þ

where x is the variable of integration or, with a slight abuse of notation, is also the identity over C. Since (4) is variational, it is
the basis of a new parametric FEM with C0-elements. We prefer quadratic isoparametric elements to linear elements, and
discuss the reasons in Section 4.5. We evolve the computational domain at each time step via a semi-implicit Euler method;
this is similar to [17,16,11,24,25,13,26,14] and is discussed in Section 4.1.

The contributions of this paper are as follows:

� We derive the novel variational formulation (4) and corresponding parametric FEM. The derivation, being based on con-
cepts from shape differential calculus, is rather concise.
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