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a b s t r a c t

A new PDE solver was introduced recently, in Part I of this two-paper sequence, on the
basis of two main concepts: the well-known Alternating Direction Implicit (ADI) approach,
on one hand, and a certain ‘‘Fourier Continuation” (FC) method for the resolution of the
Gibbs phenomenon, on the other. Unlike previous alternating direction methods of order
higher than one, which only deliver unconditional stability for rectangular domains, the
new high-order FC-AD (Fourier-Continuation Alternating-Direction) algorithm yields
unconditional stability for general domains—at an OðN logðNÞÞ cost per time-step for an N
point spatial discretization grid. In the present contribution we provide an overall theoret-
ical discussion of the FC-AD approach and we extend the FC-AD methodology to linear
hyperbolic PDEs. In particular, we study the convergence properties of the newly intro-
duced FC(Gram) Fourier Continuation method for both approximation of general functions
and solution of the alternating-direction ODEs. We also present (for parabolic PDEs on gen-
eral domains, and, thus, for our associated elliptic solvers) a stability criterion which, when
satisfied, ensures unconditional stability of the FC-AD algorithm. Use of this criterion in
conjunction with numerical evaluation of a series of singular values (of the alternating-
direction discrete one-dimensional operators) suggests clearly that the fifth-order accurate
class of parabolic and elliptic FC-AD solvers we propose is indeed unconditionally stable for
all smooth spatial domains and for arbitrarily fine discretizations. To illustrate the FC-AD
methodology in the hyperbolic PDE context, finally, we present an example concerning
the Wave Equation—demonstrating sixth-order spatial and fourth-order temporal accu-
racy, as well as a complete absence of the debilitating ‘‘dispersion error”, also known as
‘‘pollution error”, that arises as finite-difference and finite-element solvers are applied to
solution of wave propagation problems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The FC-AD (Fourier-Continuation Alternating-Direction) methodology introduced in [1] (Part I of this two-paper se-
quence) relies on two main elements: a novel spectral technique for general spatial domains (which is based on the one-
dimensional Fourier Continuation method introduced in Part I) and the classical ADI approach pioneered by Douglas, Peac-
eman and Rachford [2–6]. Unlike previous alternating direction methods of order higher than one, which only deliver uncon-
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ditional stability for rectangular domains, the new high-order FC-AD algorithm yields unconditional stability for general do-
mains—at an OðN logðNÞÞ cost per time-step for an N point spatial discretization grid. In the present contribution we provide
an overall theoretical discussion of the FC-AD approach concerning unconditional stability and accuracy in the (linear) par-
abolic and elliptic contexts, and we extend the FC-AD methodology to problems concerning wave propagation and scatter-
ing. In conjunction with numerical evaluation of a series of singular values (of the alternating-direction discrete one-
dimensional operators), our theory suggests clearly that the fifth-order accurate class of parabolic and elliptic FC-AD solvers
we propose is indeed unconditionally stable for all smooth spatial domains and for arbitrarily fine discretizations. To illus-
trate the FC-AD methodology in the hyperbolic PDE context, finally, we present an example concerning the Wave Equation—
demonstrating sixth-order spatial and fourth-order temporal accuracy, as well as complete absence of the debilitating ‘‘dis-
persion error”, also known as ‘‘pollution error”, that arises as finite-difference and finite-element solvers are applied to solu-
tion of wave propagation problems.

(A number of attempts have been made to combine the unconditional stability of the alternating direction type schemes
with the spectral character of Fourier bases [7–10]. We expect that, like our FC-AD method, these Fourier-based approaches
do not suffer from pollution errors. These previous efforts did not provide stable Fourier-based alternating-direction solvers
for non-rectangular geometries; a more detailed discussion in these regards as well as comments concerning related spectral
and spectral-element methodologies are given in the introduction to Part I.)

The appeal of the implicit alternating direction algorithms lies in the efficiency that results from their achievement of
unconditional stability at a reduced cost per time-step. An important limitation has hindered the usefulness of the ADI, how-
ever: previous alternating direction methods could not be directly applied to PDEs on arbitrary (non-rectangular) domains
without reducing the truncation error near the boundary to first order [11]. We note that while the ADI has been applied to
problems on non-rectangular geometries [12–14], these applications were based on mappings of the PDE domains to rect-
angular regions—a procedure that is generally prohibitively laborious. To our knowledge, the FC-AD approach provides the
first high-order accurate unconditionally stable alternating-direction scheme for general domains that does not rely on do-
main mappings.

A general discussion of current research on finite-difference and finite-element methods in the parabolic case for both
simple and complex geometries was provided in Part I; here it is useful to summarize some of the main conclusions we have
drawn as we placed the parabolic FC-AD algorithms in the context of the underlying literature. For diffusion equations the
most notable advantage provided by the FC-AD approach lies in its unconditional stability for general domains: in Part I we
demonstrated, for example, an improvement of a factor of 1000 in computing times, for engineering accuracies, over the
computing time required by state of the art methodologies. Another interesting comparison concerns the contribution
[15], which proposes a SAT method of order four of spatial and temporal accuracy for the diffusion equation: to our knowl-
edge, this work introduces the SAT parabolic solver of highest demonstrated order of spatial accuracy. (Unlike the CFL con-
dition for regular finite-difference methods, the SAT CFL restrictions are not affected as severely by small distances between
the boundary and the nearest discretization points in the computational domain.) In view of their explicit character, how-
ever, existing SAT methods for parabolic equations do require time-steps proportional to the square of the spatial mesh-size,
thus giving rise to high computing costs. In a direct comparison with the numerical example put forth in [15], for instance,
our parabolic FC-AD solver produced the solution with accuracies matching the values 3� 10�4, 5� 10�5 and 1� 10�5

shown in Fig. 13 of that reference, in computational times that we estimate to be of the order of 80–100 times faster than
those required by the method introduced in that reference. Such improvement factors result mainly for the fact that our
unconditionally stable solver can produce the prescribed accuracies with a number of approximately 100 times fewer
time-steps than the, e.g. 50,000 time-steps used by the SAT method in conjunction with its coarsest spatial discretization.
These improvement-factor estimates take into account the slightly super-linear FFT cost and the cost arising from the
fourth-order Richardson extrapolation inherent in our solver, as well as the cost arising from the fourth-order Runge–Kutta
and nine-point finite differences stencil used in the method [15].

As mentioned above, besides an analysis of the parabolic and elliptic FC-AD solvers introduced previously, in this paper
we put forward new FC-AD algorithms for the Wave Equation in two and three spatial dimensions. As is well known, spectral
approaches provide major advantages over other methodologies for the solution of wave propagation problems. Indeed, ow-
ing to the accumulation of phase errors over multiple wave-cycles in long wave-trains, finite-difference and finite-element
methods typically give rise to significant ‘‘dispersion errors”, also known as ‘‘pollution errors”, and thus require use of very
large numbers of points per wavelength (PPW) in large-scale problems [16]. This difficulty was discussed in detail in [17,18]
in the contexts of finite-difference and finite-element methods (FEM), respectively. It has long been recognized, further, that
spectral methods generally do not suffer from this difficulty. As might be expected in view of the spectral nature of the FC-AD
algorithms, the same is true of our Wave Equation FC-AD approach. Thus, the new FC-AD Wave Equation solver combines the
low PPW-requirements typical of spectral solvers together with the geometric flexibility, high-order accuracy and uncondi-
tional stability otherwise inherent in the parabolic and elliptic FC-AD solvers.

To demonstrate the significant advantages offered by the (essentially dispersionless) FC method in the hyperbolic context
we compare its performance with that resulting from finite-difference solvers of second- and fourth-orders of accuracy. In
order to avoid difficulties associated with enforcement of boundary conditions in the finite-difference context, the finite-dif-
ference tests we perform involve periodic geometries only; our FC simulations, in turn, involve non-periodic, complex-geom-
etry cases. The relevance of such comparisons becomes apparent when one considers that second- and fourth-order is indeed
the state of the art accuracy-order for finite-difference solvers in complex domains: general-domain solvers recently made
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