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a b s t r a c t

An algorithm for stabilizing linear iterative schemes is developed in this study. The recur-
sive projection method is applied in order to stabilize divergent numerical algorithms. A
criterion for selecting the divergent subspace of the iteration matrix with an approximate
eigenvalue problem is introduced. The performance of the present algorithm is investi-
gated in terms of storage requirements and CPU costs and is compared to the original
Krylov criterion. Theoretical results on the divergent subspace selection accuracy are estab-
lished. The method is then applied to the resolution of the linear advection–diffusion equa-
tion and to a sensitivity analysis for a turbulent transonic flow in the context of
aerodynamic shape optimization. Numerical experiments demonstrate better robustness
and faster convergence properties of the stabilization algorithm with the new criterion
based on the approximate eigenvalue problem. This criterion requires only slight
additional operations and memory which vanish in the limit of large linear systems.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Iterative methods for linear systems have taken a dominant role in the computation of problems in fluid dynamics and
aerodynamics. This is the case of implicit time discretizations for problems with a high number of degrees of freedom (DOFs)
which require the inversion of a large matrix for which direct solvers often become ineffective. However, these techniques
can suffer from some limited asymptotic convergence properties and can lead to restrictions on the time step for practical
applications. Preconditioning methods become necessary but are not always sufficient. Artificial dissipation methods may
also be used to ensure stability and enhance robustness [1] but one must be careful not to affect the accuracy and dissipation
properties of the numerical scheme. The recursive projection method (RPM) introduced by Shroff and Keller [2] constitutes
an alternative technique. The RPM was initially developed for extending the domain of convergence of fixed-point iterative
procedures in the context of bifurcation analysis [2–4]. This method aims at identifying the diverging eigenmodes of the iter-
ation matrix of the numerical scheme. Then, the method applies Newton iterations in the subspace spanned by the associ-
ated eigenvectors while keeping the original scheme in its orthogonal complement. The RPM has also been applied either to
stabilize iterative procedures or to accelerate convergence to steady-state solutions [5–7].

The RPM is however sometimes inefficient in the case of large linear systems due to the existence of modes with large
negative real parts that reduce the asymptotic convergence rate of the RPM algorithm. Davidson [3] and Janovskỳ and Lib-
erda [8] improved the performance of the RPM in the context of continuation of invariant subspaces. They used a precondi-
tioner based on a Cayley transform of the Jacobian matrix in order to modify the mapping of the eigenvalues thus eliminating
the influence of these modes. However the Cayley transform requires the inversion of a matrix of same size as the Jacobian
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matrix and is therefore unsuitable for the resolution of linear systems which is the focus of this study. Moreover, the RPM
needs additional storage space and operation counts compared to the original algorithm which is the reason why this meth-
od is mainly used for algorithm stabilization rather than for convergence acceleration. The approach introduced in this study
improves the RPM performances by reducing memory requirements and CPU time.

Numerical methods for gradient computation in the context of aerodynamic shape optimization constitute a typical
example of robustness issue for practical applications. Sensitivity analysis for aerodynamic shape optimization has recently
become of increased importance for a variety of applications [9]. It requires the computation of gradients of functionals in
the design parameter space. Among sensitivity evaluation methods, the discrete methods require the solution of a linear sys-
tem that results from the differentiation of the discrete equations of the nonlinear problem. For problems involving turbulent
flows solved using the Reynolds-Averaged Navier–Stokes (RANS) equations, there are many situations where the numerical
method for the resolution of the linear problem diverges even if it is not the case for the nonlinear problem [10–14]. If a
method converges asymptotically for the nonlinear problem, it will also do so for the linear problem. The issue is that meth-
ods that do not converge asymptotically in the nonlinear case often stall at some small residual, and are therefore still useful.
The same methods applied to the linear problem diverge. For instance, Dwight and Brezillon [15] have studied the differen-
tiation of the Spalart–Allmaras turbulence model for the discrete adjoint method. Numerical results show that different
approximations in the Spalart–Allmaras differentiation could lead to a poorly conditioned linear system and a divergent
algorithm. Nemec and Zingg [16] successfully applied an incomplete lower-upper preconditioned GMRES to the discrete ad-
joint method for the two-dimensional (2D) RANS equations with the Spalart–Allmaras turbulence model. However, memory
requirements and loss of preconditioner efficiency make this technique inappropriate to large stiff problems [16,15].

For situations in which the iterative method fails, the application of RPM constitutes a robust algorithm for solving sen-
sitivity analysis problems. The resolution of either the adjoint compressible RANS equations coupled with the one-equation
turbulence model of Spalart–Allmaras [13], or the direct compressible RANS equations coupled with the two-equation model
of Launder–Sharma [12] were successfully stabilized using this method. In the following, we will consider the numerical
methods introduced in Ref. [12] as a model to assess the developments on the RPM.

The purpose of the present study is to introduce a new procedure for enhancing the robustness and performance of the
RPM. The method is based on a new criterion for selecting the divergent subspace with an approximate eigenvalue problem
(AEP) of the iteration matrix, called the AEP criterion. The paper is organized as follows. Section 2 presents the stabilization
procedure. The RPM is described in Section 2.1. The original Krylov criterion and the AEP criterion for selecting the divergent
subspace are presented in Sections 2.2 and 2.3, respectively. Theoretical results and algorithm analyses are also shown.
Numerical results are presented for the linear advection–diffusion equation in Section 3.1 together with a sensitivity analysis
of a turbulent transonic flow over a bump in Section 3.2. Finally, conclusions are summarized in Section 4.

2. Recursive projection method

2.1. Stabilization procedure

We are concerned with solutions x of linear systems

Ax ¼ b; ð1Þ
where A 2 RN�N is a square matrix and b 2 RN is the right-hand side. Many iterative procedures for solving this problem be-
long to the family of fixed-point iterations that have the form

xðlþ1Þ ¼ FðxðlÞÞ ¼ UxðlÞ þM�1b; ð2Þ

where U = I �M�1A represents the iteration matrix of the numerical scheme and M is a preconditioning matrix.
Suppose A and M are nonsingular, then whether or not the iteration (2) converges to the solution x = A�1b depends upon

the eigenvalues of U (see for instance Ref. [17]). Here, we follow the RPM introduced by Shroff and Keller [2] for the stabil-
ization of unstable recursive fixed-point procedures. Suppose the iteration (2) diverges thus implying that there are m P 1
eigenvalues of U with modulus greater than unity:

jk1jP � � �P jkmjP 1: ð3Þ

These eigenvalues are called the divergent eigenvalues. The eigenvalue with greater modulus is commonly referred to as
the dominant eigenvalue. Define the divergent subspace

P ¼ spanfe1; . . . ; emg ð4Þ

spanned by the eigenvectors associated with eigenvalues (3), and Q ¼ P? its orthogonal complement in RN . These subspaces
form a direct sum of RN , therefore every vector can be decomposed in an unique way as the sum

8x 2 RN; 9ðxp;xqÞ 2 P�Q : x ¼ xp þ xq: ð5Þ

The orthogonal projectors onto the subspaces P and Q are denoted P and Q, respectively. These projectors may be defined
from an orthonormal basis V 2 RN�m for P in the following way

P ¼ VV>; Q ¼ I� VV>; ð6Þ
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