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a b s t r a c t

A trigonometric polynomial is a truncated Fourier series of the form
fNðtÞ �

PN
j¼0aj cosðjtÞ þ

PN
j¼1 bj sinðjtÞ. It has been previously shown by the author that

zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with
elements which are complex valued combinations of the Fourier coefficients, the ‘‘CCM’’
method. However, previous work provided no examples, so one goal of this new work is
to experimentally test the CCM method. A second goal is introduce a new alternative,
the elimination/Chebyshev algorithm, and experimentally compare it with the CCM
scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix
with real-valued elements, albeit at the price of usefulness only for real roots. The new
elimination scheme first converts the trigonometric rootfinding problem to a pair of poly-
nomial equations in the variables ðc; sÞ where c � cosðtÞ and s � sinðtÞ. The elimination
method next reduces the system to a single univariate polynomial PðcÞ. We show that this
same polynomial is the resultant of the system and is also a generator of the Groebner basis
with lexicographic ordering for the system.

Both methods give very high numerical accuracy for real-valued roots, typically at least
11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm
is typically one or two decimal places more accurate, though these differences disappear if
the roots are ‘‘Newton-polished’’ by a single Newton’s iteration. The complex-valued
matrix is accurate for complex-valued roots, too, though accuracy decreases with the mag-
nitude of the imaginary part of the root. The cost of both methods scales as OðN3Þ floating
point operations. In spite of intimate connections of the elimination/Chebyshev scheme to
two well-established technologies for solving systems of equations, resultants and Groeb-
ner bases, and the advantages of using only real-valued arithmetic to obtain a companion
matrix with real-valued elements, the ECM algorithm is noticeably inferior to the complex-
valued companion matrix in simplicity, ease of programming, and accuracy.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

When a Fourier series is truncated to its first ð2N þ 1Þ terms, the result is a generalized polynomial:

Definition 1 (Trigonometric Polynomial). A truncated Fourier series of the form

fNðtÞ �
XN

j¼0

aj cosðjtÞ þ
XN

j¼1

bj sinðjtÞ ð1Þ
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is a trigonometric polynomial of degree N, which contains a total of 2N þ 1 terms.
A trigonometric polynomial fNðtÞ has exactly 2N roots, when the roots are counted according to their multiplicity, in the

strip of the complex plane such that �p < RðtÞ 6 p as proved in [10]. (Note that roots with RðtÞ ¼ �p are excluded from this
count.) If the coefficients for fNðtÞ are real, then the number of real roots is always even, again counting roots according to
their multiplicity so that a single double root counts as two [10].

A Fourier companion matrix method with complex-valued elements was proposed by the author in the review article
[10]. However, no numerical illustrations or practical tests were provided. Is the ‘‘CCM’’ algorithm accurate in finite precision
arithmetic? One goal here is to provide numerical experiments to answer this question.

Here, we also propose a new algorithm (‘‘ECM method’’) to compute the roots of a trigonometric polynomial. This yields a
matrix whose elements are real-valued if the coefficients of the polynomial are real-valued. We also compare the two root-
finding schemes through both theoretical and experimental means. Both companion matrix methods are exact in the absence of
roundoff error, but floating point errors will be shown to favor the CCM method over the ECM procedure.

If the trigonometric polynomial contains only cosine terms or only sine terms, the roots are found much more efficiently by
the parity-exploiting algorithms of [11]. We therefore exclude such pure cosine and pure sine polynomials from discussion
here.

There is a wide variety of alternatives for computing trigonometric polynomial zeros, some restricted to truncated Fourier
series, others applicable to almost any function f ðxÞ. Doing a careful comparison would require a book, not merely research
article. However, a discussion of Fourier-specific algorithms is given in Section 7 of [10] and the original sources
[16,26,30,29,35,23].

2. A Fourier companion matrix with complex-valued elements: the CCM algorithm

The transformation

z ¼ expðitÞ ð2Þ

converts a trigonometric polynomial fNðtÞ with 2N þ 1 terms into an ordinary polynomial hðzÞ of degree 2N as independently
discovered several times [35,7,3]. The ‘‘associated polynomial’’, hðz½t�Þ � expðiNtÞfNðtÞ, is

hðzÞ ¼ 1
2

X2N

k¼0

hk zk � zN f ðt½z�Þ ð3Þ

where

hj ¼
aN�j þ ibN�j; j ¼ 0;1; . . . ; ðN � 1Þ
2a0; j ¼ N

aj�N � ibj�N; j ¼ N þ 1;N þ 2; . . . ð2NÞ

8><
>: ð4Þ

From this transformation comes the following.

Theorem 1 (Fourier Companion Matrix). Define the trigonometric polynomial

fNðtÞ �
XN

j¼0

aj cosðjtÞ þ
XN

j¼1

bj sinðjtÞ ð5Þ

The matrix elements Bjk of the Frobenius matrix for a trigonometric polynomial of general degree N (and therefore ð2N þ 1Þ terms)
are

Bjk ¼
dj;k�1; j ¼ 1;2; . . . ; ð2N � 1Þ
ð�1Þ hk�1

aN�ibN
; j ¼ 2N

(
ð6Þ

where djk is the usual Kronecker delta function such that djk ¼ 0 if j – k while djj ¼ 1 for all j and k and the hj are defined by (4).
The roots tk of fNðtÞ are the negative of

ffiffiffiffiffiffiffi
�1
p

times the logarithm of the matrix eigenvalues zk:

tk;m � argðzkÞ þ 2pm� i logðjzkjÞ; k ¼ 1;2; . . . ;2N; m ¼ integer ð7Þ

In particular, the real-valued roots of fNðtÞ for real t 2 ½�p;p� are the angles of the roots of hðzÞ on the unit circle. Equivalently,
each real-valued root tk of f ðtÞ on t 2 ð�p;p� is connected to a root zk of the associated polynomial through tk ¼ argðzkÞ8k such
that jzkj ¼ 1. Here argðzÞ is the usual complex argument function such that, for z ¼ jzj expðihÞ; argðzÞ ¼ h. From [10].

For N ¼ 2, the Fourier–Frobenius matrix is explicitly

0 1 0 0
0 0 1 0
0 0 0 1

ð�1Þ a2þib2
a2�ib2

ð�1Þ a1þib1
a2�ib2

ð�1Þ 2 a0
a2�ib2

ð�1Þ a1�ib1
a2�ib2

���������

���������
ð8Þ
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