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the method of lines. Using the shifted Griinwald finite difference formulas to approximate
the two-sided (i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting
semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local
property of fractional derivatives. We employ a modern initial value problem solver utilis-
ing backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve
these systems. For efficient performance of the Jacobian-free Newton-Krylov method it is
essential to apply an effective preconditioner to accelerate the convergence of the linear
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Method of lines iterative solver. The key contribution of our work is to generalise the fast Poisson precon-
Jacobian-free Newton-Krylov ditioner, widely used for integer-order diffusion equations, so that it applies to the two-

sided space-fractional diffusion equation. A number of numerical experiments are pre-
sented to demonstrate the effectiveness of the preconditioner and the overall solution
strategy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The concept of fractional derivatives, and their applications to modelling anomalous diffusion are widely recognised by
engineers and mathematicians. Fractional derivatives model diffusion-type processes where the underlying particle motion
deviates from Brownian motion [1]. A typical example where non-Brownian motion gives rise to anomalous diffusion is par-
ticle transport in heterogeneous porous media. Zhang et al. [2] have given an excellent review of fractional models and field
applications in this area. Perhaps the best-known experiments are the gradient tracer tests performed in a subsurface aquifer
system at the Macrodispersion Experiment (MADE) test site. Benson et al. [3] and others have analysed the data from these
experiments and concluded that they are consistent with a fractional-order model of dispersion, where the standard Fickian
term is replaced with a fractional derivative.

Transport in porous media is by no means the only area in which fractional models of diffusion are found. Magin [4] gives
an excellent account of numerous applications in the area of bioengineering, including fractional impedance, fractional
dielectrics and fractional kinetics. Some even more recently proposed fractional models include those for magnetic reso-
nance signal attenuation in human tissue [5], controlled drug delivery systems [6], and migration of water through cell walls
in wood [7].

Fractional models present additional challenges for numerical solution methods, compared to integer-order models. A
wide variety of techniques have been developed, including finite difference and related methods ([8-15]), finite element
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methods [16-18], finite volume methods [19,20], spectral methods [21,22], mesh-free methods [23,24], all of which are tai-
lored to specific forms of fractional equations.
In this paper we consider the two-sided, nonlinear space-fractional diffusion equation
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on the finite domain 0 < x, < L, with homogeneous Dirichlet boundary conditions and initial condition u(x, 0) = uy(X). The
fractional orders are assumed to satisfy 1 < o, < 2.

The unknown function u(x, t) can be interpreted as representing the concentration of a particle plume undergoing anom-
alous diffusion. The inclusion of both left and right Riemann-Liouville derivatives allows the modelling of flow regime im-
pacts from either side of the domain. The diffusion coefficient x(u, X, t) is assumed positive, and the forcing function S(u, X, t)
models sources or sinks. Meerschaert and Tadjeran [9] give the interpretation of the skewnesses p, € [0, 1] in terms of for-
ward and backward jump probabilities at the particle scale.

For compactness, we have presented Eq. (1) in its general form. In this paper, we will consider the one- and two-dimen-
sional cases (d =1 and d = 2 respectively). When considering the one-dimensional case we will generally drop the sub-
scripts on o, p, L, and x. When considering the two-dimensional case, we will set x; = x and x, = y.

The left and right Riemann-Liouville derivatives in Eq. (1) are defined by (with subscripts dropped for clarity) [25]:
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The limits of integration a and b in these definitions are the subject of some discussion in the literature. We shall elaborate
more on this in Section 4. For the finite interval [0, L] presently being considered, the values of these limits are simply a =0
and b = L.

To put the present work in context, we begin by discussing some of the key numerical methods that have been proposed
to solve various special cases of Eq. (1). Meerschaert and Tadjeran considered finite difference methods for the one-dimen-
sional, one-sided, linear case [8]. They showed that discretisation of the fractional derivatives using standard (non-shifted)
Griinwald formulas led to unstable methods when the fractional order « satisfies 1 < a < 2. To overcome this, they proposed
a method utilising shifted Griinwald formulas, which they showed to be stable, and first order accurate in space. Extensions
of this method to address two-sided problems [9], two-dimensional problems [26] and solutions with second order spatial
accuracy [27] followed soon after.

A defining characteristic of these methods is the density of the matrices they generate. For example, discretising the one-
dimensional, two-sided space-fractional diffusion equation with Meerschaert and Tadjeran’s [9] approach results in a fully
dense matrix. This has serious implications on the efficiency of the numerical scheme, which must deal with O(N?) storage
and O(N?) factorisation costs, where N is the number of nodes in the mesh. Furthermore, the expense of evaluating the dis-
crete equations scales as O(N?), again due to the non-local nature of the fractional derivatives and in contrast to the O(N)
scaling for non-fractional discretisations.

In more recent times, a number of authors have addressed the issue of high computational expense associated with the
solution of space-fractional equations. Several different approaches have been explored, with many papers employing a mix-
ture of these approaches in various fascinating ways.

Krylov subspace methods have been a popular approach, owing to their ability to solve linear systems and compute ma-
trix functions without the need to operate directly on dense matrices. Yang et al. [17,20,28] and Burrage et al. [18] used Kry-
lov subspace methods for computing matrix functions to solve fractional Laplacian equations. Moroney and Yang [29] and
Wang and Wang [30] used Krylov subspace methods to solve the two-sided space-fractional diffusion equation in one
dimension, with the former authors considering nonlinear problems and the latter authors considering linear problems with
an advection term.

Preconditioning has been a common theme in many of these papers, since it is well known that Krylov subspace methods
generally require an effective preconditioner in order to perform satisfactorily. Yang et al. [17,20,28] developed precondi-
tioners based on eigenvalue deflation. Burrage et al. [18] considered both algebraic multigrid and incomplete LU precondi-
tioning. Moroney and Yang [29] developed a banded preconditioner.

The use of fast transform methods has also proved popular of late. Wang et al. [31] showed how to exploit the Toeplitz-
like structure of the coefficient matrix for the one-dimensional, two-sided, linear space-fractional diffusion equation to de-
rive an efficient O(Nlog?N) method. Wang and Wang [30] also utilised fast Fourier transforms to efficiently compute the ma-
trix-vector products in their Krylov subspace method. Pang and Sun [32] have proposed a multigrid method utilising fast
Fourier transforms, also for the one-dimensional, two-sided, linear problem. Bueno-Orovio et al. [22] have considered
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