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in the fluid domain and an iterative penalty-projection method in the solid region. This
technique decouples the pressure-velocity degrees of freedom and, as a consequence, the
computational cost. In order to verify the accuracy and robustness of the proposed method
we compare the results between this splitting velocity-pressure algorithm and the coupled
one. These numerical results show stability and robustness of the proposed algorithm with
a strong reduction of the computational effort.
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1. Introduction

In the last decades the number of Fluid-Structure applications has been increasing in various fields of engineering. Some
examples are the studies of the stability response of aircraft wings, the blood flow through arteries, the response of bridges
and tall buildings to winds, the vibration of compressor blades and the studies of oscillations in heat exchangers (e.g., see
[1-5,33] and citations therein). A fluid structure interaction problem solves the conservative set of equations over both fluid
and solid domain.

The movement of the mesh can be taken into account with an Eulerian or Lagrangian approach. In the first case the
solid domain can undergo deformations that may change the topology of the computational grid. In this case an immersed
boundary method can be used [50,49]. For example, in [48], the motion of a flexible membrane is analyzed using a fluid
solver on a fixed Cartesian grid. Such a large deformation cannot be handled by using a Lagrangian approach where the
grid should follow the body domain. The Lagrangian approach, which does not show spurious numerical currents on the
interface, is preferred when the change of topology does not cause overlapping in the mesh structure. Clearly, imposing the
boundary conditions by using immersed boundary methods is not trivial. Issues on the accuracy of boundary treatment and
conservation properties of the numerical scheme are not still open questions. The matching between the grid lines and the
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body surface in standard moving grid approach allows better control of the grid resolution in the vicinity of the body. This
is a crucial aspect with the increase of grid size and Reynolds number [50].

The most common solution strategy implemented in software packages is the so-called partitioned approach, which de-
couples the problem into two separate sub-problems and uses dedicated software for each different region. According to this
method, the coupling is achieved by enforcing continuity conditions along the fluid-solid interface. For details the interested
reader can see [5-9]. However, when large displacements may occur, one can see that explicit partitioned algorithms show
instabilities due to the poor fluid-solid coupling matching where the solid-fluid power remains unbalanced at the interface.

In order to overcome this limit one could implicitly enforce coupling conditions that solve simultaneously for the fluid
and structure unknowns, so that the solid and fluid regions are treated as a single continuum. These algorithms are called
monolithic and usually exhibit good stability properties even with similar fluid and solid density [10-12,14,15]. Monolithic
algorithms are stable and robust but they are also CPU-time expensive [16-21]. In a monolithic approach for numerical
simulations of incompressible fluid-structure bodies the velocity and the pressure fields are coupled. This issue is enhanced
by the saddle-point character of the incompressible Lagrange multiplier formulation and by multi-dimensional geometries
where one has to deal with a high number of degrees of freedom [22,17,16,23]. The reduction of the computational cost for
such problems motivate many papers published in recent years [4,24-26,31,32]. In order to reduce such a computational
cost it is important to mention monolithic iterative solvers which use velocity-pressure splitting preconditioners, keep the
original number of degrees of freedom and preserve exact boundary conditions, see for example [47,46,28-30] and ref-
erences therein. In [47,46] the global system is solved by computing iteratively small systems defined by groups of finite
element triangulations. In this case pressure projection and pressure-velocity coupled algorithms can be used independently
over different sub-regions. In [28], corrections, implemented in the framework of finite element method, are investigated
to improve several coupling strategies and, in [29], an efficient projection preconditioner method is used to solve the cou-
pled system. Finally, recently in [30], the uncoupled velocity and pressure fields are related through the use of Lagrangian
multipliers.

Projection methods, which split the velocity from the pressure degrees of freedom, are very popular in fluids since
time dependent solutions can be obtained within a single iterative step and the boundary error can be easily controlled
near boundary layers. In regions where the parameters, that characterized the medium, are larger over several orders of
magnitude, the projection error propagates quickly in the interior and these errors may not be solved with a few iterative
steps [28,34]. The most attractive feature of projection methods is that, at each time step, one only needs to solve a
sequence of decoupled advective and elliptic equations for the velocity and the pressure field, making it very efficient for
large scale time-dependent numerical simulations [25]. It is well known that standard one-step projection methods for
fluids produce pressure solutions that are not exact near the domain boundary where velocity fields should be imposed and
they must be completed with iterative algorithms able to correct the projection boundary conditions and the corresponding
incompressible constraint. In a fluid domain the error is generated on the external walls where the velocity is prescribed
while for a solid the main error can be found on the stress-free external walls.

In this paper we propose a new iterative penalty-projection algorithm for a generic monolithic fluid-structure interaction
solver based on unstructured computational grids. In particular our strategy is to use a one-step penalty-projection method
in the fluid domain and a few step iterative penalty-projection method in the solid region. The iterative algorithm considered
here is the iterative penalty method which can be proved to be convergent under simple conditions [35]. The combination of
the penalty and the projection method in the fluid and solid region at each time step leads to good performance as shown
in the numerical section of the paper. The paper is organized as it follows: in the next section we give the mathematical
description of the algorithm, then we test the stability and the accuracy of different cases taken from literature [45,5,11].

2. Mathematical model
2.1. Notation

In this section we introduce mathematical notation used in the paper. We denote by H¥(0), s € i, the standard Sobolev
space of order s with respect to the set O, which is either the flow domain €2, or its boundary T, or part of its boundary.
Whenever m is a non-negative integer, the inner product over H™(QO) is denoted by (f, g)m and (f, g) denotes the inner
product over H%(®) = L%(©). Hence, we associate with H™(©) its natural norm I fllmo =+ (f, f)m. For 1 <p < oo the
Sobolev space W™P () is defined as the closure of C*°(0) in the norm

1 oy = 3 /|(%)“f()<)lpdx.
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The closure of C3°(O) under the norm | - [[wm.r©) will be denoted by W(r)n'p(O). Whenever possible, we will neglect the
domain label in the norm. For vector-valued functions and spaces, we use boldface notation. For example, H*(2) = [H*(2)]"
denotes the space of Mi"-valued functions such that each component belongs to H*(£2). Of special interest is the space
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