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Multiphysics problems often involve components whose macroscopic dynamics is driven 
by microscopic random fluctuations. The fidelity of simulations of such systems depends 
on their ability to propagate these random fluctuations throughout a computational do-
main, including subdomains represented by deterministic solvers. When the constituent 
processes take place in nonoverlapping subdomains, system behavior can be modeled via a 
domain-decomposition approach that couples separate components at the interfaces be-
tween these subdomains. Its coupling algorithm has to maintain a stable and efficient 
numerical time integration even at high noise strength. We propose a conservative domain-
decomposition algorithm in which tight coupling is achieved by employing either Picard’s 
or Newton’s iterative method. Coupled diffusion equations, one of which has a Gaussian 
white-noise source term, provide a computational testbed for analysis of these two cou-
pling strategies. Fully-converged (“implicit”) coupling with Newton’s method typically out-
performs its Picard counterpart, especially at high noise levels. This is because the number 
of Newton iterations scales linearly with the amplitude of the Gaussian noise, while the 
number of Picard iterations can scale superlinearly. At large time intervals between two 
subsequent inter-solver communications, the solution error for single-iteration (“explicit”) 
Picard’s coupling can be several orders of magnitude higher than that for implicit coupling. 
Increasing the explicit coupling’s communication frequency reduces this difference, but the 
resulting increase in computational cost can make it less efficient than implicit coupling 
at similar levels of solution error, depending on the communication frequency of the latter 
and the noise strength. This trend carries over into higher dimensions, although at high 
noise strength explicit coupling may be the only computationally viable option.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many, if not most, problems of practical importance deal with complex systems that involve multiple physical (as well 
as chemical and biological) processes, which occur on a wide range of spatial and/or temporal scales. These processes can 
either spatially coexist or occur in adjacent regions of space. We focus on the latter class of multiphysics phenomena, in 
which different processes take place in separate spatial domains and affect each other at the interfaces between these 
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domains. Conjugate heat transfer across a fluid–solid interface [1] is an illustrative example of such phenomena. It is central 
to applications as diverse as satellite cold gas propulsion systems [2] and spacecraft re-entry into Earth’s atmosphere [3].

Following the terminology established in the field of fluid–structure interactions (FSI), one can subdivide solution 
strategies for interfacially coupled multiphysics systems into two modeling frameworks: “monolithic” [4] and “component 
partitioning” [5]. The former combines all the different physics components and their interactions into a single discrete 
operator, which is then advanced in time. This “tight coupling” ensures temporal synchronization of all the state variables 
and hence possesses excellent robustness, accuracy and stability properties. However, it is computationally demanding and 
“intrusive”, i.e., requires development of new codes. The second framework, which is also known as domain decomposition 
(DD), advances solutions of each physics component independently from the others, using additional solvers to exchange 
information at the interfaces through a coupling algorithm. It is “nonintrusive”, i.e., allows for a “black-box” implementation 
of the physics components which can be done with existing (“legacy”) codes. This operational expediency comes at a cost 
of reduced accuracy and stability when the physics components involved are “loosely coupled”, leading to desynchroniza-
tion of the state variables in the different components by one time step or a fraction of a time step [6]. Iterative coupling 
techniques can be used to achieve a tight coupling, which eliminates this time shift [7,8,6].

Despite the widespread use of DD approaches, there is a dearth of systematic studies of their numerical properties. 
Most studies deal with the coupling of deterministic components, which are typically represented by deterministic par-
tial differential equations (PDEs). Representative examples include an analysis of the stability of an interfacial coupling in 
one-dimensional fluid–structure thermal diffusion [9], an analysis of predictor–corrector staggered schemes for simulating 
FSI [6], an investigation of the stability of a coupling algorithm based on mixed interface conditions for conjugate heat 
transfer simulations [10], and a demonstration of the effects of a non-converged iterative coupling on the stability of a 
coupled linear diffusion problem [11]. These and other similar studies have led to nontrivial conclusions, which are likely to 
be problem-specific and demonstrate the algorithmic complexity of coupling nonlinear solvers. For example, an otherwise 
unstable loose coupling used in FSI simulations can be made stable by enforcing Neumann boundary conditions for the 
structural calculation and Dirichlet boundary conditions for the fluid solver [9]; and standard staggered schemes for FSI 
simulations need to be modified by several iteratively made corrector steps to ensure conservation of energy [7,8,6].

When random fluctuations are generated by one of the constituent solvers, conclusions drawn from numerical studies of 
fully-deterministic systems may need to be modified. Currently, a systematic analysis of how random noise or stochasticity 
of one of the constituent solvers affects the numerical performance of both the other (possibly deterministic) solvers and an 
algorithm used to couple them is largely missing. Such studies are needed to gain confidence in the ever-growing number of 
multiphysics and hybrid simulations that combine deterministic and stochastic solvers [12–15]. The analysis presented below 
contributes to this area of research by studying the effects of random noise on numerical properties (coupling convergence, 
stability and accuracy) of a domain-decomposition algorithm which tightly couples a deterministic and stochastic subdomain 
solver. A complementary challenge, the need for adding a random source term to a (deterministic) PDE solver coupled to a 
stochastic solver whose microscopic fluctuations drive the macroscopic system dynamics (e.g., in highly nonlinear problems 
involving phase transitions), has been addressed in [16–19].

In Section 2 we formulate a computational testbed problem, one-dimensional diffusion in a composite material one 
segment of which contains a Gaussian white-noise forcing. Section 3 contains a description of our DD approach to solving 
this problem, which tightly couples the deterministic (explicit Euler) and stochastic (Euler–Maruyama) diffusion solvers 
using Newton’s or Picard’s iteration. Section 4 presents a stability analysis of our algorithm using fully-converged Picard’s 
iteration. In Section 5 we conduct a series of numerical experiments to explore the performance of our algorithm. These 
findings are summarized in Section 6.

2. Problem formulation

Consider a one-dimensional linear diffusion equation,

∂ρ

∂t
= ∂

∂x

[
D

∂ρ

∂x

]
+ f , x ∈ � ≡ (−L/2, L/2), t > 0, (1a)

which describes the evolution of concentration ρ(x, t) in space, x, and time, t . The diffusion coefficient D(x) is piecewise 
constant,

D(x) =
{

D1 for x ∈ �1 ≡ (−L/2,0)

D2 � D1 for x ∈ �2 ≡ [0, L/2),
(1b)

and the source term f (x, t) is defined as

f (x, t) =
{

0 for x ∈ �1

ξ(x, t) for x ∈ �2,
(1c)

where ξ(x, t) is a zero-mean Gaussian space–time white noise with covariance

E[ξ(x, t)ξ(y, τ )] = σ 2
ξ δ(x − y)δ(t − τ ), x, y ∈ �2; t, τ > 0 (1d)
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