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We consider the problem of finding a mesh such that 1) it is the closest, with respect 
to a suitable metric, to a given source mesh having the same connectivity, and 2) the 
volumes of its cells match a set of prescribed positive values that are not necessarily 
equal to the cell volumes in the source mesh. This volume correction problem arises in 
important simulation contexts, such as satisfying a discrete geometric conservation law and 
solving transport equations by incremental remapping or similar semi-Lagrangian transport 
schemes. In this paper we formulate volume correction as a constrained optimization 
problem in which the distance to the source mesh defines an optimization objective, while 
the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We 
solve this problem numerically using a sequential quadratic programming (SQP) method 
whose performance scales with the mesh size. To achieve scalable performance we develop 
a specialized multigrid-based preconditioner for optimality systems that arise in the 
application of the SQP method to the volume correction problem. Numerical examples 
illustrate the importance of volume correction, and showcase the accuracy, robustness and 
scalability of our approach.

Published by Elsevier Inc.

1. Introduction, motivation and background

Mesh motion is at the core of many numerical methods for time dependent flow and structure problems. Examples 
include Lagrangian hydrodynamics methods [1], in which the mesh evolves with time in order to track deformations of 
the problem domain, and the related Arbitrary Lagrangian–Eulerian [2] methods, which incorporate a mesh rezoning step 
to mitigate excessive mesh deformations and mesh tangling. Another important example are semi-Lagrangian methods for 
advection problems [3,4], including schemes utilizing incremental remapping [5,6] as a transport algorithm. Such methods 
perform a single Lagrangian step and then remap the resulting solution back to a fixed Eulerian mesh.

Despite individual differences all such methods require computation of the mesh motion under a velocity field u. Most 
of them approximate the deformed Lagrangian mesh by 1) solving numerically the kinematic relation dx/dt = u to estimate 

* Corresponding author.
E-mail addresses: mdelia@sandia.gov (M. D’Elia), dridzal@sandia.gov (D. Ridzal), kjpeter@sandia.gov (K.J. Peterson), pbbochev@sandia.gov (P. Bochev), 

shashkov@lanl.gov (M. Shashkov).
1 Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

http://dx.doi.org/10.1016/j.jcp.2016.02.050
0021-9991/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jcp.2016.02.050
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:mdelia@sandia.gov
mailto:dridzal@sandia.gov
mailto:kjpeter@sandia.gov
mailto:pbbochev@sandia.gov
mailto:shashkov@lanl.gov
http://dx.doi.org/10.1016/j.jcp.2016.02.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.02.050&domain=pdf


456 M. D’Elia et al. / Journal of Computational Physics 313 (2016) 455–477

Fig. 1. A non-divergent velocity field deforms an initial cell κ(t0) into a cell κ(t1) having the same volume. Approximation of vertex positions by numerical 
time integration (diamonds) and their subsequent linking by straight lines yields an approximate deformed cell ̂κ(t1) with a different volume.

the new cell vertex positions, and 2) connecting them by straight lines. Consequently, the cells in the deformed mesh incur 
two types of errors: one due to the approximation of the vertex trajectories and another due to the approximation of the 
deformed cell edges by straight lines. The former can be viewed as a time discretization error, while the latter can be 
interpreted as a spatial error.

The temporal and spatial errors yield approximate Lagrangian cells whose volumes do not match the volumes of the exact 
Lagrangian cells; see Fig. 1 for an illustration with a non-divergent velocity field. Unfortunately, volume approximation errors 
may have an outsized influence on the accuracy of numerical methods relying on mesh motion. In particular, a scheme may 
fail to preserve constant solutions even though temporal and spatial errors in the approximation of the Lagrangian cell are 
better than first-order accurate.

To understand this phenomenon let us examine the Lagrangian motion of a single mesh cell κ(t), representing a fluid 
parcel with material density ρ , under a non-divergent velocity field u. Let κ(t0) denote the initial position of the fluid 
parcel and κ(t) be the exact Lagrangian parcel at time t > t0, and let the volume and mass of κ at time t be defined as

|κ(t)| =
∫

κ(t)

dV and Mκ (t) =
∫

κ(t)

ρdV .

Because non-divergent Lagrangian flows preserve volume and mass there holds

d

dt
|κ(t)| = 0 and

d

dt
Mκ (t) = 0. (1)

Suppose now that ρ = const and κ(t) moves from its initial position at time t0 to a new position at time t1 = t0 + �t , then 
by (1)

ρ(t1) = Mκ (t1)

|κ(t1)| = Mκ (t0)

|κ(t0)| = ρ(t0) = const.

On the other hand, since κ(t1) is not known exactly, except for some trivial velocity fields, a numerical scheme uses an 
approximation κ̂(t1) for which |̂κ(t1)| �= |κ(t1)|; see Fig. 1. As a result, the material state ρ̂ in the approximate Lagrangian 
fluid parcel κ̂(t1) is given by

ρ̂(t1) = Mκ (t1)

|̂κ(t1)| �= Mκ (t0)

|κ(t0)| = ρ(t0). (2)

In other words, the constant density is not preserved. Yet, many Lagrangian and semi-Lagrangian methods rely on relation-
ships such as (2) to approximate densities, tracer mixing ratios, material volume fractions and other quantities of interest. 
This effectively renders such methods unable to represent exactly constant solutions despite the fact that κ̂(t1) can be an 
accurate approximation of the exact fluid parcel κ(t1).

This example illustrates the consequences of violating the broader notion of a Discrete Geometric Conservation Law [7]
(D-GCL) for a given numerical scheme. D-GCL stipulates that computation of geometric quantities in the deformed mesh 
configuration must be done in a way that allows the associated numerical scheme to reproduce constant states for any 
mesh motion.

One possible pathway for achieving a D-GCL for (2) is to enforce equality of deformed cell volumes at all time steps to 
their initial volumes in the undeformed configuration. This can be done by further deforming κ̂ (tn) to a corrected cell κ∗(tn)

such that

|κ∗(tn)| = |κ(t0)| ∀n . (3)

The corrected cell must be valid and can be subject to further mesh quality conditions such as convexity. In addition, we 
require that κ∗(tn) remain close to κ̂(tn) at all time steps, because the latter approximates the unknown exact Lagrangian 
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