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We present a new algorithm for reconstructing material-dependent subzonal information 
based on staggered primary/dual-mesh remapping of material-dependent conserved 
quantities. The algorithm is appropriate in the context of geometric, intersection-based 
overlay remapping methods, with specific application to staggered, total energy conserving, 
multi-material Lagrangian hydrodynamics schemes that discretize material masses on 
subzonal mesh elements. Our new approach avoids direct remapping of material-dependent 
subzonal variables; instead, the spatial profile of each variable is reconstructed using a 
combination of material-dependent zone (primary mesh) information, material-indepen-
dent node (dual mesh) information, and discrete interface-reconstructed material concen-
tration information. Conservation and convergence properties of the new algorithm are 
established through several challenging multi-material remapping and hydrodynamics 
tests.

© 2015 Published by Elsevier Inc.

1. Introduction

In [18], we outlined an algorithm for conservatively reconstructing subzonal information using staggered data at zones 
(primary mesh) and nodes (dual mesh). Because the number of subzonal elements in the mesh exceeds the total number of 
zone and node elements, reconstruction takes the form of a least-squares optimization procedure. Conservation is achieved 
by enforcing linear equality constraints at each zone and node.

This work is motivated by staggered, compatible [5] Arbitrary Lagrangian–Eulerian (ALE) methods that employ an overlay-
based (also known as intersection, interpolation, or geometric) remap. In the staggered, compatible framework, mass is 
discretized onto subzonal elements to ensure consistent representations of mass at both zones and nodes. Conservation 
of mass, linear momentum, and energy is a natural consequence of this discretization.

In [13], the authors propose a separate method for remapping subzonal data. State variables are collocated to subzonal 
elements and remapped from subzones to subzones. We initially proposed the reconstruction algorithm in [18] to alleviate 
the expense of computing subzone–subzone intersections for each remap. The computational cost of an overlay remap 
scales with the number of element intersections. Timing data and scaling arguments in [18] indicate that staggered overlay 
remapping (i.e. computing zone–zone and node–node intersections) followed by subzonal reconstruction outperforms direct 
subzonal remapping in terms of computational efficiency for 2D polygonal meshes.

A second motivation for pursuing subzonal reconstruction over direct subzonal remapping is the problem of remapping 
multimaterial data. The direct subzonal remap described in [13] and applied in [12] is only applicable for single-material 
problems. Extending the methodology to multi-material data in an efficient manner is not straightforward; at the very 
least, a subzonal remap requires a multi-material model that is discretized onto subzonal elements. In the context of multi-
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Fig. 1. Corner subvolumes (c, in red) of a 2D (left) and 3D (right) zone. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

material ALE calculations, this implies storing discrete volume and/or mass fraction data at subzones as well as performing 
interface reconstruction at a sub-grid scale. In our experience, most multi-material hydro codes discretize material con-
centrations on zone elements. Adapting such codes to handle the higher memory and complexity requirements of a fully 
subzonal multi-material discretization is not optimal—rather we prefer to adapt our remap algorithm to handle zone cen-
tered material fractions.

In this paper, we describe a multimaterial extension to the subzonal reconstruction algorithm. The extension is conser-
vative and requires minimal modification of the host code to operate. We consider a volume-of-fluid (VOF) multimaterial 
model with volume fraction data discretized onto zonal elements [1]. In principle, the algorithm may be adapted to operate 
within the moment-of-fluid (MOF) multimaterial framework as well with little modification.

Note that the problem of remapping multimaterial subzonal masses in a conservative, monotonic, and efficient manner 
is not confined to overlay-based remaps. Similar problems arise in advective/flux-based remaps as well. The availability 
of numerical mass fluxes simplifies the problem somewhat. Interested readers may consider [15] for advective remapping 
strategies for staggered, compatible discretizations.

Hybrid methods have also been developed recently to bridge the gap between overlay and advective remaps. Numerical 
mass fluxes may be obtained from intersection data and limited in intelligent ways to promote conservation, monotonicity, 
and accuracy. In the context of this work, we point the reader toward [9,10].

The paper is organized as follows: section 2 describes the compatible subzonal discretization of hydrodynamic variables; 
section 3 defines the overlay procedure for remapping single- and multi-material data; section 4 details the three-stage 
multimaterial subzonal reconstruction algorithm; and section 5 demonstrates the new algorithm’s performance a series of 
pure remapping and ALE hydrodynamics test problems.

2. Background

2.1. Subzonal discretization

Our main application in this paper is the use of a geometric overlay-based remap with the spatially-staggered, 
Lagrangian-frame algorithm for hydrodynamics outlined in [5]. The Lagrangian hydrodynamic discretization of [5] derives a 
number of important properties—for instance, conservation, generality to unstructured grids, and improved accuracy—from 
the discretization of state variables on subzonal mesh elements.

Each zone is subdivided into subzonal elements, often referred to as corners, indexed here by c. Each corner is a poly-
hedron in 3D or a quadrilateral in 2D and corresponds to a unique neighboring zone–node pair (zc , nc) on an arbitrary, 
unstructured mesh. The vertices of corner c consist of the centroid of zone zc , the position of node nc , and the centers of 
each of the faces and edges of zc that touch nc (see Fig. 1).

Element volumes for zones V z and nodes Vn are defined by summing neighboring corner volumes V c :

V z =
∑
c(z)

V c and Vn =
∑
c(n)

V c . (1)

Here c(z) denotes the set of corners inside zone z, and c(n) denotes the set of corners touching node n. The union of each 
corner element in c(n) defines the mesh element associated with node n (see Fig. 2). A corner can thus be thought of as 
the intersection of zone element zc on the primary mesh and node element nc on the dual mesh.

2.2. Subzonal densities and compatible hydrodynamics

The staggered, compatible discretization for conservative hydrodynamics places kinematic variables of velocity and ki-
netic energy at nodes and thermodynamic variables of internal energy at zone centers. In order to facilitate Lagrangian 
definitions of the mass on both zones and nodes, the fluid mass is stored on the subzonal corners. Discrete zonal and nodal 
masses are then naturally defined as coarsened representations of these subzonal corner masses on their respective element 
volumes:

mz =
∑
c(z)

mc and mn =
∑
c(n)

mc, (2)
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