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Differential equations may possess coefficients that vary on a spectrum of scales. Because 
coefficients are typically multiplicative in real space, they turn into convolution operators 
in spectral space, mixing all wavenumbers. However, in many applications, only the largest 
scales of the solution are of interest and so the question turns to whether it is possible to 
build effective coarse-scale models of the coefficients in such a manner that the large scales 
of the solution are left intact. Here we apply the method of numerical homogenisation to 
deterministic linear equations to generate sub-grid-scale models of coefficients at desired 
frequency cutoffs. We use the Fourier basis to project, filter and compute correctors for 
the coefficients. The method is tested in 1D and 2D scenarios and found to reproduce 
the coarse scales of the solution to varying degrees of accuracy depending on the cutoff. 
We relate this method to mode-elimination Renormalisation Group (RG) and discuss the 
connection between accuracy and the cutoff wavenumber. The tradeoff is governed by a 
form of the uncertainty principle for convolutions, which states that as the convolution 
operator is squeezed in the spectral domain, it broadens in real space. As a consequence, 
basis sparsity is a high virtue and the choice of the basis can be critical.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the early 1970s, a significant hurdle faced by particle physicists was the computation of partition functions that in-
volved evaluating integrals over large ranges in wavenumbers. Ultimately, the only parameters of interest were at coarse 
scales of the systems under study. To compute these parameters, Kenneth Wilson introduced mode-elimination Renormal-
isation Group (RG) that enabled building low-wavenumber representations of fluctuating coefficients while succeeding in 
preserving the coarse-scale accuracy of the solutions. In other words, RG describes a means of projecting the small scales 
onto the large, and by degrees, integrating out rapid variations in the coefficients. This procedure has the potential to greatly 
reduce the computational burden. RG is perhaps the most celebrated instance of the concept of building coarse-scale mod-
els of inherently multi-scale phenomena, and has been widely used to model a range of phenomena. The application of 
mode-elimination RG to generate sub-grid-scale models of fluid turbulence, i.e. that convey the effect of scales smaller than 
the grid size, was suggested by Yakhot and Orszag [18] and studied in detail for passive-scalar advection by Avellaneda and 
Majda [1] (also see Smith and Woodruff [15] who compare these methods and Kraichnan’s Direct Interaction Approximation, 
Kraichnan [10]). Yakhot and Orszag [18] suggested integrating over shells of wavenumbers, proceeding from the largest to 
the smallest, sequentially adding corrections to the coefficients of the turbulence model in question.

Independently, Kozlov [9] and Papanicolaou and Varadhan [13] studied solutions to the diffusion equation with random 
coefficients. Defining a small parameter ε to be the ratio of the correlation length-scale of the random coefficient to the 
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relevant coarse scale of the solution, Kozlov [9] and Papanicolaou and Varadhan [13] derived a two-scale asymptotic theory 
to estimate effective coefficients. The formulation is similar in concept to RG and produces a zero-wavenumber (constant) 
representation of the original random coefficient, and in the limit of vanishingly small ε, Papanicolaou and Varadhan [13]
showed that the solution was accurate. Multi-scale coefficients however present a challenge and appropriately decimating 
these coefficients onto a coarser grid (not necessarily zero wavenumber) is of relevance in computational physics. In the 
finite-scale-cutoff scenario with non-random media, the method of numerical homogenisation is remarkably similar to RG. 
These techniques can be applied to build effective models of wavespeeds (whose spatial distributions can be complicated) 
in seismology, deriving coarse-scale descriptions of porosity coefficients in porous media etc. In this article, we will focus 
on these two scenarios.

A central goal of seismic studies of the Sun, stars and Earth is to infer the structural and dynamical properties of 
interiors using observations of their surface oscillations. The forward problem, critical to this effort, is the simulation of 
small-amplitude (linear) waves through the relevant media. Such media can comprise a wide spectrum of length scales, 
possibly much smaller than the wavelength. The problem thus becomes computationally stiff and very expensive to attempt. 
We are therefore interested in bringing to bear methods of homogenisation, which describe the coarse-scale behaviour
of differential equations with rapidly varying coefficients, on these problems of wave propagation. We seek to replace 
the fine-scale structure with an effective sub-grid-scale model such that the coarse scales of the solution are accurately 
reproduced to within a specified tolerance.

Similarly, in porous media, the permeability of the medium, a tensor quantity, is finely sampled at a large number of 
spatial points. The goal is to coarsen the grid and appropriately average these tensor coefficients. Effective coarse-grained 
models of fine-scale tensor coefficients will necessarily mix various components. Here we will derive a formal theory that 
describes how to mix various terms. Classical homogenisation primarily addresses problems in which the coefficients peri-
odically vary [3], with the sub-grid model being a zero-wavenumber representation (e.g., by the harmonic mean). However, 
in a number of real-world applications, the rapid variations are aperiodic and a more general theory to attempt such prob-
lems is required. Along these lines, multi-resolution analysis in the aid of numerical homogenisation of aperiodic media has 
been developed (e.g. [4,7,8,12]). More recently, e.g., Capdeville et al. [5], have posed the problem of terrestrial seismic wave 
propagation through aperiodic heterogeneous media in the language of classical homogenisation.

In this article, we follow the methodology of [7] and [8], which is well laid out and from which details may be intuited. 
Numerical homogenisation affords two major advantages: significant reduction in spatial complexity and a less restrictive 
Courant condition on the timestep. Here, we use the spatial Fourier and Haar-wavelet bases to investigate the accuracy of 
numerical homogenisation on three different wave equations, each gaining complexity over the previous. The Fourier basis 
lends itself to elegant interpretation but produces dense matrices whose inverses may not be easy to compute. In contrast 
sparse matrix inversion techniques may be easily extended to homogenisation in the Haar basis. The demonstrable success 
of the method encourages a more complete exploration of its possibilities.

2. Numerical homogenisation in 1D

Consider the 1D operator L acting on a function u defined by Lu = ∂x(a ∂xu), where a = a(x) > 0 is a coefficient, ∂x
is the spatial derivative with respect to the x coordinate. The wave equation corresponds to ∂2

t u − S = Lu, where t is 
time, S = S(x, t) is a source and the equation takes on a hyperbolic character. The time-independent porous-flow equation, 
identical to the diffusion equation, is given by Lu = 0 and is elliptic in character.

The product in real space between a(x) and ∂xu is a convolution in Fourier domain, resulting in the mixing of coarse 
and fine scales. In other words, the Fourier transform of this term (we do not add extra symbols to denote the transformed 
quantity) is

Lu(k) = −
∑

k′
kk′a(k − k′) u(k′), (1)

and this results in a mixing between low and high wavenumbers. Thus to obtain the low-wavenumber representation of u, 
one must solve the equation over the full set of wavenumbers, which can be computationally expensive. The goal then is to 
create a sub-grid-scale model of a such that the coarse scales of u are well reproduced. Let us consider the projection of a 
function in the Fourier basis. Define a projection operator F that transforms a function in real space to the Fourier basis, 
producing a set of Fourier coefficients which may subsequently be characterised as “coarse” or “fine”. Denoting the forward 

transform by F , and given an N × 1 vector v , the projection is written as F v =
(

P
Q

)
v , where P is a kp × N matrix that 

projects v on to the coarse set of coefficients (of size kp × 1) and the (N − kp) × N-sized matrix Q projects v on to the fine 
coefficients. We note that F−1F = FF−1 = IN , where the subscript denotes the size of the identity matrix (N × N). Since 
we use the orthogonal Fourier basis, the inverse transform is F−1 = (P∗ Q ∗), where the ∗ denotes conjugate transpose 
(the Hermitian transpose) and the associated identities are satisfied

P P∗ = IP , Q Q ∗ = IQ , P Q ∗ = 0, Q P∗ = 0, P∗ P + Q ∗ Q = IN . (2)

Note that IP is of size kp × kp and IQ of size kq × kq (where kq = N − kp ). With no loss of generality, this method may also 
be extended to other orthogonal and bi-orthogonal systems. Note that the sizes of the zero matrix 0 in the two identities 
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