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The present work addresses numerical methods required to compute particle volume 
fraction or number density. Local volume fraction of the lth particle, αl , is the quantity 
of foremost importance in calculating the gas-mediated particle–particle interaction effect 
in multiphase flows. A general multiphase flow with a distribution of Lagrangian particles 
inside a fluid flow discretized on an Eulerian grid is considered. Particle volume fraction 
is needed both as a Lagrangian quantity associated with each particle and also as an 
Eulerian quantity associated with the grid cell for Eulerian–Lagrangian simulations. In 
Grid-Based (GB) methods the particle volume fraction is first obtained within each grid 
cell as an Eulerian quantity and then the local particle volume fraction associated with 
any Lagrangian particle can be obtained from interpolation. The second class of methods 
presented are Particle-Based (PB) methods, where particle volume fraction will first be 
obtained at each particle as a Lagrangian quantity, which then can be projected onto 
the Eulerian grid. Traditionally, the GB methods are used in multiphase flow, but sub-
grid resolution can be obtained through use of the PB methods. By evaluating the total 
error, and its discretization, bias and statistical error components, the performance of the 
different PB methods is compared against several common GB methods of calculating 
volume fraction. The standard von Neumann error analysis technique has been adapted 
for evaluation of rate of convergence of the different methods. The discussion and error 
analysis presented focus on the volume fraction calculation, but the methods can be 
extended to obtain field representations of other Lagrangian quantities, such as particle 
velocity and temperature.

Published by Elsevier Inc.

1. Introduction

The Eulerian–Lagrangian point-particle approach has become an important methodology in the simulation of canonical 
and complex multiphase flows [1–3]. In this approach the continuous carrier phase is solved in the Eulerian frame of 
reference, typically using a fixed Eulerian grid, while the time evolution of the dispersed phase (can be particles, droplets or 
bubbles) is considered in the Lagrangian frame by tracking every individual particle’s position, velocity and other properties.1
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1 Henceforth the term “particles” will apply equally well to droplets and bubbles.
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There are four key components to a general Eulerian–Lagrangian point-particle simulation: 1) Fluid–fluid interaction 
represented by the continuous phase Navier–Stokes equation, whose solution on an Eulerian grid is the subject matter of 
standard CFD. 2) Fluid-to-particle forward coupling which accounts for the effect of the continuous phase on the dispersed 
phase. 3) Particle-to-fluid coupling which accounts for the back effect of particles on the fluid. 4) Particle–particle coupling 
which accounts for the interaction between the particles, either through direct collisions or as mediated by the continuous 
phase [4–8]. In one-way coupled simulations only the first two interactions are modeled and in two-way coupled simula-
tions particle-to-fluid back coupling is also included. When particle–particle interactions are important, the multiphase flow 
problem is considered to be four-way coupled [9,10].

Fluid-to-particle coupling requires interpolation of the Eulerian continuous phase properties to the location of the La-
grangian particles, which in general will not coincide with the Eulerian grid points. A number of interpolation schemes, 
such as linear interpolation, fourth and sixth order Lagrange interpolation, and Hermite interpolation, have been proposed 
and their accuracies analyzed [11,12].

Particle-to-fluid coupling involves projection of the Lagrangian quantities, such as particle drag force and heat transfer, 
back to the continuous phase momentum and energy equations as source terms. This projection is from the position of the 
Lagrangian particles to the Eulerian grid points. Due to conservation of momentum and energy, the projection operation 
must satisfy partition of unity – in other words, the total feedback of momentum and energy from each particle to the 
surrounding Eulerian grid must be equal and opposite to those of the particle. The following three projection schemes 
have been widely considered in the past: 1) particle-in-cell (PIC) method pioneered by Evans et al. [13] and Harlow [14], 
2) projection on neighboring node method [1,2] and 3) projection onto identical stencil method advanced by Sundaram and 
Collins [15]. The accuracy and relative performance of the different projection methods have been considered by Boivin et 
al. [16] and Narayanan et al. [17].

Of particular significance is the work of Garg et al. [18] who presented a rigorous analysis of the different projection 
operations in conjunction with different interpolation operations and separated the error into deterministic (discretization 
and bias errors) and stochastic (statistical error) components. They demonstrated it is important for numerical convergence 
to maintain the number of Lagrangian points per grid cell while performing a grid refinement study.

The focus of the present work is to extend the above investigations and consider an aspect of fluid-mediated particle–
particle interaction (i.e., the effect of neighboring particles on quantities such as particle drag force). Different methods 
that are used in the computation of particle volume fraction will be considered and their accuracy evaluated. Local parti-
cle volume fraction around the lth particle, αl , and the volume fraction at the ith grid cell are the quantities of foremost 
importance. These information are often required in the modeling fluid-mediated particle–particle interaction and back cou-
pling of momentum to the carrier fluid. Local volume fraction can be defined in different ways. Particle volume fraction is 
traditionally defined as the fractional volume occupied by the particles inside a reference volume, whose size is chosen to 
be much smaller than the scale of volume fraction variation. In this definition local volume fraction around any particle 
depends on the distribution of a cloud of particles around it within the reference volume. On the other hand, given the 
location of all the particles within the flow domain, one can consider Voronoi tessellation of the entire domain and define 
the volume of the Voronoi element around each particle to be the volume of space associated with that particle [19]. Then 
the local particle volume fraction of a particle can be defined as the ratio of the particle volume to the volume of space 
associated with it. In this later definition, local particle volume fraction depends only on the location of the nearest neigh-
bors. Irrespective of the precise definition, it is clear that particle volume fraction is fundamental information that depends 
on inter-particle distances.

Here a general multiphase flow with a distribution of Lagrangian particles inside a fluid flow discretized on an Eulerian 
grid is considered. Numerical methods for the evaluation of particle volume fraction are addressed. In Eulerian–Lagrangian 
simulations particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an 
Eulerian quantity associated with the grid cell. For instance, correlations have been proposed to account for the effect of 
volume fraction on the drag force on a particle. Thus, in the evaluation of drag force, local particle volume fraction is needed 
as a Lagrangian quantity. On the other hand, in the continuous phase governing equations in order to account for the spatial 
variation of the fluid volume fraction, it is also necessary to represent particle volume fraction as an Eulerian quantity (note 
by definition the sum of the local particle and fluid volume fraction is unity). Clearly it is sufficient to first obtain particle 
volume fraction either in the Lagrangian frame for each particle or in the Eulerian frame as a field variable. Once one of 
these two representations is known interpolation or projection techniques can be used to obtain the other representation.

Two classes of methods for the evaluation of particle volume fraction are addressed. The first will be termed Grid-Based
(GB) methods, where particle volume fraction will first be obtained within each grid cell as an Eulerian quantity, from which 
local particle volume fraction associated with any Lagrangian particle can be obtained from interpolation. The second class 
of methods will be termed Particle-Based (PB) methods, where particle volume fraction will first be obtained at each particle 
as a Lagrangian quantity, which can then be projected onto the Eulerian grid.

The traditional approach to particle volume fraction evaluation has been using GB methods. For instance, the lowest 
order GB method to calculate particle volume fraction is to count all particles within a grid cell and add their volume 
contributions to obtain the local particle volume fraction within that cell. At the next level, each particle contributes part 
of its volume to the particle volume fraction of the grid cells surrounding it, according to its location with respect to the 
surrounding grid cell centers. By construction, the GB methods can represent particle volume fraction variation only on the 
grid scale – any volume fraction variation on scales smaller than the grid is erased in the grid-scale averaging process.
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