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a b s t r a c t

The Galerkin method offers a powerful tool in the solution of differential equations and
function approximation on the real interval [�1, 1]. By expanding the unknown function
in appropriately chosen global basis functions, each of which explicitly satisfies the given
boundary conditions, in general this scheme converges exponentially fast and almost
always supplies the most terse representation of a smooth solution. To date, typical
schemes have been defined in terms of a linear combination of two Jacobi polynomials.
However, the resulting functions do not inherit the expedient properties of the Jacobi poly-
nomials themselves and the basis set will not only be non-orthogonal but may, in fact, be
poorly conditioned. Using a Gram-Schmidt procedure, it is possible to construct, in an
incremental fashion, polynomial basis sets that not only satisfy any linear homogeneous
boundary conditions but are also orthogonal with respect to the general weighting func-
tion ð1� xÞað1þ xÞb. However, as it stands, this method is not only cumbersome but does
not provide the structure for general index n of the functions and obscures their depen-
dence on the parameters ða; bÞ. In this paper, it is shown that each of these Galerkin basis
functions, as calculated by the Gram-Schmidt procedure, may be written as a linear com-
bination of a small number of Jacobi polynomials with coefficients that can be determined.
Moreover, this terse analytic representation reveals that, for large index, the basis functions
behave asymptotically like the single Jacobi polynomial Pða;bÞn ðxÞ. This new result shows that
such Galerkin bases not only retain exponential convergence but expedient function-fitting
properties too, in much the same way as the Jacobi polynomials themselves. This powerful
methodology of constructing Galerkin basis sets is illustrated by many examples, and it is
shown how the results extend to polar geometries. In exploring more generalised defini-
tions of orthogonality involving derivatives, we discuss how a large class of differential
operators may be discretised by Galerkin schemes and represented in a sparse fashion
by the inverse of band-limited matrices.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Spectral methods are a widely used tool in the solution of differential equations, function approximation and variational
problems [1,2]. Their utility is based on the fact that if the solution sought is smooth, usually only a few terms in an expan-
sion of global basis functions are needed to represent it to high accuracy. This efficiency comes about because the spectral
coefficients, fn, typically tend to zero faster than any algebraic power of their index n, showing either exponential or some-
times super-exponential convergence [3]. On the non periodic canonical interval [�1, 1], the Jacobi polynomials are a well-
known class of polynomials exhibiting spectral convergence, of which particular examples are Chebyshev polynomials of the
first and second kinds, and Legendre polynomials [3]. Chebyshev polynomials are often a popular choice since, via their links
with Fourier methods, they have a fast transform.
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When approximating a given function by a spectral expansion, the choice of which Jacobi polynomials to use can rest on
the required asymptotic behaviour of the error. For example, Chebyshev polynomials of the first kind are well-known to min-
imise the maximum error between any function and its approximant, the so-called minimax or L1 norm characteristic [4,5].
Such an expedient property has led to widespread use of Chebyshev approximants in numerical computation [6]. Lesser
known but, in the appropriate case no less useful, is the property that the Chebyshev polynomials of the second kind min-
imise the error in the L1 norm, that is, the integrated absolute error between the function and its approximant. These prop-
erties are intimately tied to certain properties of the polynomials themselves: Chebyshev polynomials of the first kind are
equal-ripple (uniform oscillations) and those of the second kind are equal-area (the area under the curve between any
two consecutive zeros is constant). Lastly, Legendre polynomials minimise the error between any function and its approx-
imant in the L2 norm although this is not associated with any obvious graphical property of the polynomials themselves.

Physical problems almost always involve known boundary conditions which can be fully exploited in a Galerkin method
[7,8,3]. Such a scheme adopts an expansion in terms of a global basis set constructed so that each member explicitly satisfies
the boundary conditions; by encoding this additional information, out of all numerical methods, this approach almost always
provides the most terse numerical representation. If an analytic solution of a differential equation is known but difficult to
compute, it is expedient to write it in terms of a spectral expansion (for instance in Chebyshev polynomials) which, after
finding the coefficients, is easy to evaluate. In this paper, we shall see such an approximation method can be extended by
using an expansion in terms of an exponentially convergent orthogonal Galerkin basis. Furthermore, as in functional approx-
imation by Jacobi polynomials, the principal error stems from the first ignored term in the expansion which can be chosen in
an optimal fashion, for instance, to be quasi-equal-ripple and therefore for the approximant to minimise the L1 error.

Unlike a spectral expansion of a known function, the error in the solution of a differential equation or variational problem
is not well approximated by the first ignored term (since the error contaminates all coefficients). It is therefore not possible
to prescribe in advance, by choice of the basis set, the asymptotic behaviour of the error. However, as we shall see subse-
quently, Galerkin schemes remain a useful tool since, not only do they converge exponentially fast but, because the boundary
conditions are already encoded, in general they converge faster than canonical spectral methods. In a traditional Galerkin
method, a differential equation is discretised by imposing an orthogonality condition to the same set of basis functions. How-
ever, other variants include imposing orthogonality to a different set of functions in the so-called Petrov-Galerkin scheme
and, by extending the basis sets to those of compact support, Galerkin schemes form the foundation of the finite-element
method [9]. By adopting a Galerkin expansion at the outset, often subsequent analysis is eased since the boundary conditions
may, essentially, be dispensed with. By contrast, in other pseudospectral schemes that could be employed to solve differen-
tial equations (e.g. Chebyshev-tau or a collocation method), the boundary conditions are carried through to the end of the
calculation where they are imposed explicitly as additional rows of the discretised matrix system.

There are several particular cases where Galerkin expansions have the greatest utility. First are problems where terseness
of the solution is pivotal. Such a case can arise when forming low-order models of a system, or when using symbolic com-
putation to produce an approximation to the solution. To expedite the solution of matrix problems symbolically, the matrix
size should be reduced as much as possible, a property which Galerkin methods can readily provide. Second are variational
problems, where often integration by parts of the raw equations produces awkward boundary terms. Unless one is very
lucky, the boundary conditions cannot be used to evaluate these terms and no further progress is possible. Within a Galerkin
method, such boundary terms can always be evaluated and a matrix system then constructed [10]. Third, Galerkin methods
often exhibit the lowest condition number dependence on matrix size. Such an issue may arise when solving a problem to
very high resolution. For instance, although a standard Chebyshev-tau method may theoretically be capable of resolving a
fine-scale solution, its numerical discretisation may be too ill-conditioned and any answer swamped with numerical error
in finite precision (although, solving the system using high precision will give an accurate answer). Galerkin methods often
have a low scaling of the condition number with matrix size, thus minimising the computational error and allowing high
resolution in finite precision. The main drawback of Galerkin methods is that, in general, no fast-transform exists and, until
now, there has been no generally accepted method of constructing the required basis sets for arbitrary boundary conditions.

Galerkin schemes are easily constructed when considering linear homogeneous boundary conditions. Note that if the gi-
ven boundary conditions are not homogeneous they can always be made so with the addition of an appropriate function to
the unknown solution, with the associated modification of the equations. To date, typical schemes involve forming a linear
combination of a Jacobi polynomial (usually a Chebyshev polynomial, TnðxÞ) with one of neighbouring index or some fixed
low-order polynomial in order to satisfy the required conditions [11,7,3]. For example, the following are two possible choices
of basis sets that satisfy the boundary condition f 0ð1Þ ¼ 0:

/nðxÞ ¼ TnðxÞ � n2T1ðxÞ; vnðxÞ ¼ ðn� 1Þ2TnðxÞ � n2Tn�1ðxÞ:

It is clear that /nðxÞ becomes increasingly ill-conditioned as n increases since, when normalised, /nðxÞ ! T1ðxÞ ¼ x as n!1
which is independent of n. The second case, vnðxÞ, is better conditioned but forms a basis set that is neither orthogonal nor
close to equal-ripple. Thus in recombining Chebyshev polynomials, many of their optimal properties have been lost.

An alternative method to construct a basis set is to use a Gram-Schmidt procedure in the following way. The lowest-de-
gree polynomial that satisfies the boundary conditions is W1ðxÞ ¼ 1 (up to a normalisation). The next element W2ðxÞ is writ-
ten as an arbitrary quadratic in x, whose coefficients are determined by imposing (i) the boundary condition and (ii)
orthogonality to W1ðxÞ ¼ 1. Note that we need to jump degree from 0 to 2: there is no non-trivial linear form that will satisfy
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