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Most dynamic sea ice models for climate type simulations are based on the viscous–plastic 
(VP) rheology. The resulting stiff system of partial differential equations for ice velocity 
is either solved implicitly at great computational cost, or explicitly with added pseudo-
elasticity (elastic–viscous–plastic, EVP). A recent modification of the EVP approach seeks 
to improve the convergence of the EVP method by re-interpreting it as a pseudotime VP 
solver. The question of convergence of this modified EVP method is revisited here and it 
is shown that convergence is reached provided the stability requirements are satisfied and 
the number of pseudotime iterations is sufficiently high. Only in this limit, the VP and the 
modified EVP solvers converge to the same solution. Related questions of the impact of 
mesh resolution and incomplete convergence are also addressed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The basis of most current sea-ice models is the assumption of viscous–plastic (VP) rheology connecting the ice deforma-
tion rates with stresses in the ice [1]. The resulting set of equations is very stiff due to the non-linearity in the VP rheology. 
Hence, they are computationally challenging and require efficient solution methods to avoid the restriction to very small 
time steps in standard explicit methods. Partial linearisation allows the stiff part of the problem to be treated implicitly [2]; 
this requires using solvers but lifts the time step limitation. However, because of linearisation, that is, splitting the operator 
into implicit and explicit parts and estimating viscosity using the previous Picard iterate, far too many (Picard) iterations 
(O(104)) are required to achieve method convergence, so that traditionally only a few iterations are made and convergence 
is sacrificed [3]. This motivated the implementation of fully nonlinear Jacobian-free Newton–Krylov (JFNK) solvers [4–6]. 
They converge faster but still remain an expensive solution.

The elastic–viscous–plastic (EVP) method is an alternative to implicit methods. It relaxes the time step limitation of the 
explicit VP method by introducing an additional elastic term to the stress equations. This allows a fully explicit implementa-
tion with much larger time steps than for the explicit VP method [7,8] but requires subcycling within the external time step 
set by the ocean model. The effects of the additional elasticity term, however, are reported to lead to noticeable differences 
in the deformation field, and to lead to smaller viscosities and weaker ice (e.g., [5,9–11]). In many cases these effects are 
linked to the violation of stability limits (analogous to the CFL-criterion for advection) associated with the explicit time 
stepping scheme of the subcycling process [7,8]. Their most frequent manifestation is grid-scale noise in the ice divergence 
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field and hence in viscosities. While the numerical code as a rule remains stable and maintains smooth distributions of 
ice concentration and thickness, the noise in the ice velocity divergence may deteriorate solutions, in particular on meshes 
with fine or variable resolution [10]. In an effort to improve the performance of the EVP method, a modification of the 
time-discrete EVP model (EVP*) was proposed by adding an inertial time stepping term to the momentum balance [5]. This 
EVP* method was further reformulated by [11] as a “pseudotime” iterative scheme converging to the VP rheology. By con-
struction, it should lead to solutions identical to those of the VP method provided it converges and remains stable. Yet, 
despite improvements in solutions, the convergence has not been achieved [11].

Here we reconsider the elementary analysis of stability of the EVP* method carried out by [11] and conduct a series 
of numerical simulations that are aimed at clarifying conditions under which the convergence can be achieved. This is the 
main question that we address in this paper. Additionally, we are going to illustrate the implications of our findings as the 
resolution is refined. We also explore the consequences of incomplete convergence (limited by the prescribed number of 
pseudotime steps) on the quality of the EVP* solution.

We start with an introduction of the EVP* scheme as formulated in [11] and elaborate on the convergence conditions of 
a simplified one-dimensional (1D) scheme. Although this analysis largely follows that by [11], we arrive at new conclusions 
that help to formulate an optimal strategy. Subsequently, we discuss our results on the basis of experiments performed with 
the unstructured-mesh finite-element sea ice model FESIM [12], which is a component of the Finite-Element Sea ice–Ocean 
Model FESOM [13]. Finally, conclusions and outlook are presented.

2. The EVP* method

The horizontal momentum balance of sea ice is written as

m(∂t + f×)u = aτ − Cdaρo(u − uo)|u − uo| + F − mg∇H . (1)

Here m is the ice (plus snow) mass per unit area, f is the Coriolis vector, a the ice compactness, u and uo the ice and ocean 
velocities, ρo is the ocean water density, τ the wind stress, H the sea surface elevation, g the acceleration due to gravity 
and F j = ∂σi j/∂xi the contribution from stresses within the ice. We follow [11] in writing the VP constitutive law as

σi j(u) = P
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The parameter e = 2 is the ratio of the major axes of the elliptic yield curve, ε̇d = ε̇kk is the divergence, and ε̇s =
((ε̇11 − ε̇22)

2 + 4ε̇2
12)

1/2 is the shear. Note that we use the replacement pressure, (�/(� + �min))P , [14] in the formu-
lation of the VP constitutive law to ensure that the stress is on elliptic yield curve when � � �min. The ice strength P is 
parameterised as P = hP∗e−c(1−a) , where h is the mean thickness, and the constants P∗ and c are set to P∗ = 27 500 N m−2

and c = 20.
As mentioned above, the difficulty in the integration of (1) is the stiff character of the stress term, which requires 

prohibitively small time steps in an explicit time stepping scheme. The traditional approach is either implicit [2], where 
viscosities are estimated at the previous iteration and several iterations are made, or EVP [7,15], which reduces the time 
step limitations by adding pseudo-elasticity. Discussion of the convergence issues can be found, for example, in [11] and is 
not repeated here.

The suggestion by [11] is equivalent, up to detail of treating the Coriolis and ice–ocean drag terms, to formulating the 
EVP* method as:
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In (4), R sums all the terms in the momentum equation except for the rheology and the time derivative, �t is the time 
step of the ice model, the index n labels the time levels, that is, discrete moments in the real time, and the index p is that 
of pseudotime (subcycling step number). The Coriolis term in Rp+1/2 is treated implicitly in our implementation and the 
ice–ocean stress term is linearly-implicit (Cdρo|uo − up |(uo − up+1)). In (3), σi j(up) implies that the stresses are estimated 
by (2) based on the velocity from iteration p, and σ p

i j is the variable of the pseudotime iteration. The parameters α and β
in the last formulae are large numbers that are selected from stability considerations [11]. They replace the terms 2T /�te
and (β∗/m)(�t/�te), where T is the elastic damping time scale and �te the subcycling time step of the standard EVP 
formulation, and parameter β∗ has been introduced in [5]. After convergence of (3) and (4), the pseudotime terms drop out 
and the resulting solution is exactly the VP solution:
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