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We present a new numerical algorithm for tracking the evolution of flame holes in 
diffusion flames. The key element is the solution of an evolution equation for a flame 
state field defined on a complex moving surface. The surface itself can evolve in time 
and is defined implicitly as a level set of an associated Cartesian scalar field. The surface 
coordinates, or parameterization, do not need to be determined explicitly. Instead, the 
numerical method employs an embedding technique where the evolution equation is 
extended to the Cartesian space. In our application, the flame state field represents the 
chemical activity state of a diffusion flame; i.e. quenched and burning regions of the flame 
surface. We present a formulation that describes the formation, propagation, and growth 
of flame holes using edge-flame modeling in laminar and turbulent diffusion flames. The 
evolution equation is solved using a high-order finite-volume WENO method and a new 
extension algorithm defined in terms of propagation PDEs. The complete algorithm is 
demonstrated by tracking the dynamics of flame holes in a turbulent reacting shear layer 
and its applicability is also demonstrated in a turbulent reacting lifted jet simulation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of partial differential equations on surfaces is an area of research with a variety of applications 
such as image processing, geometry, physiology, solidification, gravitation, and fluid mechanics (see Ratz and Voigt [1]). The 
problem of evolution of a field constrained to a surface can be described in terms of surface differential operators (gradient, 
divergence, etc.) if a parametric description of the surface (e.g., z = (z1, z2)) is available. Unfortunately, it is difficult and 
computationally expensive to employ this approach for a general surface, where even creating a clean surface mesh might 
be difficult [1]. Additionally, frequent re-meshing may be needed if the surface evolves in time, and particularly if the surface 
can develop topological changes. An alternative approach to solving PDEs on surfaces using the parametric coordinates is 
to embed the surface in the three-dimensional Cartesian space. This requires a transformation of the surface PDE to an 
equivalent volumetric PDE that allows one to solve the latter using customary Cartesian operators.

The heart of an embedding method is an extension operator by which the surface field is extended smoothly throughout 
the Cartesian space. Surface data is propagated normal to isosurfaces of an embedding function that implicitly defines the 
surface. These methods can be classified into geometrical and differential equation-based methods. Introduced by Bertalmıo 
et al. [2], differential equation-based methods construct a PDE defining the extension operation in the embedding space. 
The solution of this equation has the property that the extended surface data in the Cartesian domain is normal to the 
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isosurfaces of the embedding function. Cartesian discretizations can then be applied in the embedding space to solve the 
surface PDE on the implicit surface. This method has been applied to a wide variety of problems [1–3] and has been used for 
solving surface advection problems on evolving surfaces [4,5]. The Cartesian space data structures (rather than the intrinsic 
coordinates of the complex surface) result generally in faster execution. In addition, to minimize computational cost, the 
embedding PDE is typically only solved in a narrow band around the surface. However, solving the embedding PDE requires 
the imposition of artificial boundary conditions at the boundary of the band in which the embedding PDE is solved [3]. If 
instead we seek to solve the embedding PDE in a much larger band around the surface, the artificial imposition of boundary 
conditions is not an issue and this type of method does not have difficulty with extending surface data far away from the 
surface. In the geometrical “closest point method” [6–8], surface data is propagated along the local normal direction by use 
of a closest point extension. Values of the extended surface field at grid points in the embedding Cartesian space are set to 
be equal to the value of the surface field evaluated at the point on the surface that is closest to the Cartesian grid point. This 
is implemented by determining the closest point on the surface relative to a grid point through a closest point transform 
and then interpolating the value of the variable at that point from the data in the Cartesian grid surrounding it. The closest 
point extension has the desired property that the intrinsic surface gradient operator (and divergence operator) is the same 
as the Cartesian gradient of the extended field when evaluated at the surface and does not require the imposition of artificial 
boundary conditions. The method can also be constructed to be high-order accurate. For instance, the orthogonal gradient 
radial basis function method of Piret [9] uses a closest point representation with the surface approximated using a radial 
basis function approach to obtain spectral accuracy. It has been successful in solving diffusion and advection equations [7]
and has been modified to efficiently solve problems on a moving surface by Leung et al. [10]. The grid-based particle method 
by Leung et al. [10] reconstructs the interface through a local least squares approximation. This allows the computation of 
the closest point transform, which is used to apply the closest point extension. The method tracks the interface motion by 
using a Lagrangian particle tracking method, using the movement of the surface to update the closest point extension. This 
type of method allows for the efficient computation of the closest point method for the case of an evolving surface. Finding 
the closest point to a surface, however, becomes increasingly difficult as the distance from the surface increases. The closest 
point function can be costly to compute and multivalued. As previously stated, PDE-based methods do not have problematic 
behavior far from the surface.

The main contribution of the present paper is the development of a hybrid closest point and PDE-based Cartesian 
embedding method applied to a moving surface to model a dynamically-complex turbulent combustion problem. Turbu-
lent diffusion flames experience velocity gradients (strain rate) that vary in space and time, increasing in magnitude with 
increasing Reynolds number. Since the combustion conversion rate is limited by the fixed chemical time scales of the ele-
mentary reactions that describe the combustion of each fuel-oxidizer mixture, eventually combustion is unable to adjust to 
fast flow time scales and the reaction is partially and locally quenched. The quenching or extinction process starts at those 
locations where the rate of heat release, which sustains the high temperature of the combustion, is unable to balance the 
rate at which the flow extracts heat from the reaction zone [11,12]. The flame ceases to exist once the temperature drops 
sufficiently bellow the extinction temperature of the flame (all remnant temperature and chemical products diffuse quickly 
away and radicals recombine into stable, practically inert, species). If the Reynolds number keeps increasing, for example by 
increasing the velocity in a jet flame, extinction will propagate and quench the flame globally (not just locally or transito-
rily). The process by which high strain rates quench the flame is called extinction while the healing of a quenched zone, 
by advection or heating to more favorable regions is termed reignition. These locally quenched regions of a flame are called 
here “flame holes”; although the extinction zones can have arbitrary shapes even resembling strips or islands [13,14]. After 
the development of the flame hole, the quenched region grows, shrinks, merges, splits, and changes shape depending on 
the evolution of the flame rim.

Computationally modeling all these flow/chemistry interactions at high Reynolds numbers is prohibitively expensive 
using first-principle methods, i.e. resolving all fields. The transport and reaction of each chemical species needs to be 
computed and the number of species is large, ranging from tens to hundreds of species in reduced and full chemical mech-
anisms, respectively. More importantly, in turbulent reacting flows of interest for flame hole dynamics, the reaction zone 
thickness is typically many times smaller than that required to resolve the turbulence [15]. In the absence of extinction, 
one well-established modeling approach is to represent the mixture as an ensemble of thin reaction zones called flamelets 
[16–18]. The reaction takes place near the stoichiometric surface, where fuel and oxidizer meet in stoichiometric propor-
tions. Flamelets are based on an asymptotic analysis technique (not based on ad-hoc modeling concepts). The procedure 
consists in identifying the small flame thickness δ over which all reactions take place and separating the internal layer 
where these reactions are important, which is governed by
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where Yi denotes the species mass fractions, T the temperature, ωi the reaction rates of species i, and η is an inner 
spatial coordinate in the reaction zone along the normal coordinate to the flame sheet (from the perspective of the outer 
non-reactive solution). The technical procedure is quite complicated and can be found in [19] with full details. A predecessor 
of the formal complete asymptotic theory is due to Peters [17], who identified a simplification to the governing equations
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