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are assumed to be a linear function of the relative velocity, which is valid in the low-fre-
quency range. The coexistence of propagating fast compressional wave and shear wave,
and of a diffusive slow compressional wave, makes numerical modeling tricky. To avoid
restrictions on the time step, the Biot’s system is splitted into two parts: the propagative
part is discretized by a fourth-order ADER scheme, while the diffusive part is solved ana-
lytically. Near the material interfaces, a space-time mesh refinement is implemented to
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Biot's model capture the small spatial scales related to the slow compressional wave. The jump condi-
Time splitting tions along the interfaces are discretized by an immersed interface method. Numerical
Finite difference methods experiments and comparisons with exact solutions confirm the accuracy of the numerical
Cartesian grid modeling. The efficiency of the approach is illustrated by simulations of multiple
Immersed interface method scattering.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The propagation of waves in porous media has crucial implications in many areas, such as the characterization of indus-
trial foams, spongious bones and petroleum rocks. The most widely used model describing the propagation of mechanical
waves in a saturated porous medium was proposed by Biot in 1956. A major achievement in Biot’s theory was the prediction
of a second (slow) compressional wave, besides the (fast) compressional wave and the shear wave classically propagated in
elastic media.

Two regimes are distinguished, depending on the frequency of the waves. At frequencies smaller than a critical frequency
fo, the fluid flow inside the pores is of Poiseuille type, and the viscous efforts between the fluid and the solid depend linearly
on the relative velocity. In this case, the slow compressional wave is almost static and highly attenuated [4]. An adequate
modeling of this diffusive mode remains a major challenge in real applications. At frequencies greater than f, inertial effects
begin to dominate the shear forces, resulting in an ideal flow profile except in the viscous boundary layer, and the slow wave
propagates [5,32]. Experimental observations of the slow wave in the low-frequency range [36] and in the high-frequency
range [10] have confirmed Biot’s theory. In the current study, we focus on the low-frequency range.

Until the 1990s, Biot’s equations were mainly studied in the harmonic regime. Various time-domain methods have been
proposed since, based on finite differences [14,46,45], finite elements [47], discontinuous Galerkin methods [38], boundary
elements [41], pseudospectral methods [7,8] and spectral element methods [34]. A recent review of computational
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poroelasticity can be found in [9]. Nevertheless, none of the methods proposed in the low-frequency range give a complete
answer to the following difficulties:

o the viscous effects greatly influence numerical stability, imposing a restrictive time step. In some physically relevant
cases, computations cannot be carried out in a reasonable time;

o the wavelength of the slow compressional wave is much smaller than that of the other waves. Consequently, one faces the
following alternative: either a coarse grid well-suited to the fast wave is chosen, and the slow wave is badly discretized;
either a fine mesh is used, and the computational cost increases dramatically;

e maximum computational efficiency is obtained on a Cartesian grid; in counterpart, the interfaces are coarsely discretized,
which yields spurious solutions. Alternatively, unstructured meshes adapted to the interfaces provide accurate descrip-
tion of geometries and jump conditions; however, the computational effort greatly increases, due to the cost of the mesh
generation and to the CFL condition of stability.

The aim of the present study is to develop an efficient numerical strategy to remove these drawbacks. A time-splitting is
used along with a fourth-order ADER scheme [42] to integrate Biot's equations. A flux-conserving space-time mesh refine-
ment [3] is implemented around the interfaces to capture the slow compressional wave. Lastly, an immersed interface meth-
od [26,27] is developed to provide a subcell resolution of the interfaces and to accurately enforce the jump conditions
between the different porous media. As illustrated by the simulations, the combination of these numerical methods high-
lights the importance of an accurate modeling of the slow wave.

This article, which generalizes a previous one-dimensional work [12], is organized as follows. Biot’s model is briefly re-
called in Section 2. The numerical methods are described in Section 3. Section 4 presents numerical experiments and com-
parisons with exact solutions. In Section 5, conclusions are drawn and future perspectives are suggested.

2. Physical modeling
2.1. Biot’s model

Biot’s model describes the propagation of mechanical waves in a porous medium consisting of a solid matrix saturated
with fluid circulating freely through the pores [4,6,8,9]. It is assumed that

o the wavelengths are large compared with the diameter of the pores;
o the amplitudes of perturbations are small;
o the elastic and isotropic matrix is fully saturated by a single fluid phase.

This model relies on 10 physical parameters: the density pyand the dynamic viscosity # of the fluid; the density ps and the
shear modulus u of the elastic skeleton; the porosity 0 < ¢ < 1, the tortuosity a > 1, the absolute permeability r, the Lamé
coefficient Jrand the two Biot’s coefficients  and m of the saturated matrix. The unknowns are the elastic and acoustic dis-
placements u, and uy, the elastic stress tensor ¢, and the acoustic pressure p. In one hand, the constitutive laws are:
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where I is the identity, ¢ is the rate of fluid change, and ¢ is the strain tensor
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The symmetry of ¢ in (1) implies compatibility conditions between spatial derivatives of ¢, leading to the Beltrami-Michell
equation [39,13]
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where /o = /s — °m is the Lamé coefficient of the dry matrix.
On the other hand, the conservation of momentum yields
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