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a b s t r a c t

Multi-element uncertainty quantification approaches can robustly resolve the high sensi-
tivities caused by discontinuities in parametric space by reducing the polynomial degree
locally to a piecewise linear approximation. It is important to extend the higher degree
interpolation in the smooth regions up to a thin layer of linear elements that contain the
discontinuity to maintain a highly accurate solution. This is achieved here by introducing
Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collo-
cation (SSC) method. For each simplex in the discretization of the parametric space, the
stencil with the highest polynomial degree is selected from the set of candidate stencils
to construct the local response surface approximation. The application of the resulting
SSC–ENO method to a discontinuous test function shows a sharper resolution of the jumps
and a higher order approximation of the percentiles near the singularity. SSC–ENO is also
applied to a chemical model problem and a shock tube problem to study the impact of
uncertainty both on the formation of discontinuities in time and on the location of discon-
tinuities in space.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Resolving discontinuities in stochastic problems is important, since they can lead to high sensitivities with respect to in-
put uncertainties. They can also result in oscillatory approximations and, consequently, in the prediction of non-zero prob-
abilities for unphysical realizations such as negative static pressures. In order to avoid these problems, the polynomial
interpolation degree can locally be reduced to a linear approximation to avoid overshoots at the discontinuity in a multi-ele-
ment uncertainty quantification (UQ) approach. In this context, two points are essential to maintain a highly accurate solu-
tion despite the locally first degree approximation. Firstly, the region in which the interpolation is reduced to a piecewise
linear function should be as small as possible. This means that the samples need to be concentrated around the discontinuity
to pinpoint its location. Secondly, the higher degree interpolation in the smooth regions should be extended as close as pos-
sible up to the discontinuity to maintain high order accuracy near the singularity. These two objectives are achieved here by
introducing an Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collocation (SSC) method.

The ENO scheme has been developed by Harten and Osher [13] as a robust spatial discretization in the finite volume
method (FVM) for deterministic Computational Fluid Dynamics (CFD) [14]. In that field, the robust approximation of discon-
tinuities is critical for resolving shock waves and contact surfaces in the flow field. Therefore, it was proposed by Abgrall [1]
and Barth [6] to use shock-capturing FVM to discretize also the parametric space to obtain robust approximations for
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stochastic CFD. These FVM discretizations of the combined physical and parametric space use the ENO and Weighted Essen-
tially Non-Oscillatory (WENO) [16] schemes. Since FVM has originally been developed for the three-dimensional physical
space, the direct extension of FVM to these high dimensional parametric spaces can, however, be inefficient due to the
curse-of-dimensionality. Because of the different nature of the parametric space, there are also no physical fluxes between
the cells in the stochastic directions, which form the basis of FVM. Therefore, we follow a different approach to extend the
robustness of FVM to parametric space. We reformulate the robustness principles of FVM in terms of the parametric space
and develop new UQ methods that satisfy these concepts in the stochastic dimensions. This approach has the advantages
that it maintains the FVM robustness in combination with the effectiveness of specifically designed methods for UQ, which
can also be used with other spatial discretizations than FVM. In this way, we have previously introduced, for instance, the
Total Variation Diminishing (TVD) [12,31], Extremum Diminishing (ED) [15,33], and Local Extremum Diminishing (LED)
[15,35] principles into UQ and proposed the Essentially Extremum Diminishing (EED) [34] concept.

The ENO spatial discretization [13] achieves an essentially non-oscillatory approximation of the solution of hyperbolic
conservation laws. Non-oscillatory means, in this context, that the number of local extrema in the solution does not increase
with time. The ENO scheme obtains this property using an adaptive-stencil approach with a uniform polynomial degree for
reconstructing the spatial fluxes. Each spatial cell Xj is assigned r stencils fSj;igr

i¼1 of degree p, all of which include the cell Xj

itself. Out of this set of candidate stencils fSj;ig, the stencil Sj is selected for cell Xj that results in the interpolation wjðxÞwhich
is smoothest in some sense based on an indicator of smoothness ISj;i. In this way, a cell next to a discontinuity is adaptively
given a stencil consisting of the smooth part of the solution, which avoids Gibbs-like oscillations in physical space. Attention
has been paid to the efficient implementation of ENO schemes by Shu and Osher [24,25]. Fig. 1 shows an example of the ENO
stencil selection in a FVM discretization of a discontinuity in one spatial dimension using piecewise quadratic polynomials.

ENO-type stencil selection is here used in the SSC multi-element UQ method to obtain an accurate approximation of dis-
continuities in parametric space. Multi-element UQ methods discretize the stochastic dimensions using multiple subdo-
mains comparable to spatial discretizations in physical space. These local methods [3,19,28] can be based on Stochastic
Galerkin (SG) projections of Polynomial Chaos (PC) expansions [10,36] in each of the subdomains. Other methods [2,8,17]
use a Stochastic Collocation (SC) approach [4,37] to construct the local polynomial approximations based on sampling at
quadrature points in the elements. These methods commonly use sparse grids of Gauss quadrature rules in hypercube sub-
domains combined with solution-based refinement measures for resolving nonlinearities. Because of the hypercube ele-
ments, these methods are most effective in capturing discontinuities that are aligned with one of the stochastic coordinates.

In contrast, the SSC method [35,34] is based on a simplex tessellation of the parametric space with sampling points at the
vertexes of the simplex elements. The polynomial approximation in the simplexes Nj is built using higher degree interpola-
tion stencils Sj, with local polynomial degree pj, consisting of samples in the vertexes of surrounding simplexes. The degree pj

is controlled by a Local Extremum Conserving (LEC) limiter, which reduces pj and the stencil size to avoid overshoots in the
interpolation of the samples where necessary. The limiter, therefore, leads to a non-uniform polynomial degree that reduces
to a linear interpolation in simplexes which contain a discontinuity and that increases away from singularities. SSC employs
adaptive refinement measures based on the hierarchical surplus and the geometrical properties of the simplexes to identify
the location of discontinuities. However, the limiter can result in an excessive reduction of the polynomial degree also at
significant distances away from a discontinuity. Since the polynomial degree affects the refinement criteria, this can also
deteriorate the effectiveness of the refinement to sharply resolve singularities.
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Fig. 1. ENO stencil selection for the quadratic reconstruction wjðxÞ in the spatial cell Xj out of the candidates fwj;1;wj;2;wj;3g for cell-centered FVM in one
physical dimension.
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