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FFT-based solvers introduced in the 1990s for the numerical homogenization of heterogen-
eous elastic materials have been extended to a wide range of physical properties. 
In parallel, alternative algorithms and modified discrete Green operators have been 
proposed to accelerate the method and/or improve the description of the local fields. 
In this short note, filtering material properties is proposed as a third complementary 
way to improve FFT-based methods. It is evidenced from numerical experiments that the 
grid refinement and consequently the computation time and/or the spurious oscillations 
observed on local fields can be significantly reduced. In addition, if the two filters based 
on Voigt or Reuss homogenization rules can improve or deteriorate the method depending 
on the microstructure, a stiff inclusion within a compliant matrix or the reverse, the 
proposed ‘2-layer’ filter is efficient in both situations. The study is proposed in the context 
of linear elasticity but similar results are expected in a different physical context (thermal, 
electrical. . . ).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The spectral methods based on the Lippmann–Schwinger equation associated to a discrete Green operator are efficient 
numerical iterative methods devoted to the evaluation of physical properties of heterogeneous unit cells submitted to peri-
odic boundary conditions. If the method proposed initially [9] suffers from various drawbacks, different propositions have 
been made to improve it. These propositions can be classified into two categories. The first category [3–6,12] operates on 
the iterative algorithm to reduce the number of iterations until convergence, without changing the numerical solution, while 
the second category [1,11] modifies the discrete Green operator to improve both the numerical solution fields and the con-
vergence properties. Actually, spurious oscillations are commonly observed on the numerical solution fields when using the 
discrete Green operator proposed initially.

The purpose of this short note is to propose the filtering of material properties as a complementary way to improve 
these methods without any modification of the iterative algorithm or of the discrete Green operator. The idea is inspired 
by previous works [1,2,10] assigning homogenized properties to heterogeneous finite elements or voxels (i.e. crossed by an 
interface between two materials), which can be regarded as a mechanical filter whose size is the same as the element size. 
Here the effect of the filter radius is considered and a new mechanical filter based on a multilayer homogenization rule is 
proposed in addition to the classical Voigt and Reuss rules. The benefits of this approach, evidenced by a simple numerical 
experiment, are the improvement of the spatial convergence properties as well as the reduction of spurious oscillations. 
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In this example, for a given convergence criterion, the required spatial resolution can be divided by a factor between 2.6 
and 7.2, corresponding to a reduction of the problem size by a factor between 6.7 and 51.8 in 2D. Thus, reducing the problem 
size, filtering materials properties decreases the computation time. Moreover, this does not strongly affect the convergence 
properties of the iterative algorithm, here the classical fixed-point algorithm [8].

2. Filtering mechanical properties

The exact problem to solve is the evaluation of the strain (stress and displacement) field(s) within a heterogeneous unit 
cell Ω described by its stiffness tensor field c and submitted to a macroscopic strain E with periodic boundary conditions. 
The exact solution is given by the following equations from which a fixed-point algorithm can be derived [8]:

ε(x) = −(Γ0 ∗ τ )(x) + E for x ∈ Ω (1a)

τ (x) = (
c(x) − c0

) : ε(x) for x ∈ Ω (1b)

Γ0 is the periodic Green operator for a homogeneous medium of stiffness c0. The convolution product ∗ can be written in 
Fourier space as follows:{

ε̂(ka) = −Γ̂0(ka) : τ̂ (ka) for a ∈ Z
3 and a �= 0

ε̂(0) = E
(2)

Usually, in order to obtain an approximate solution to the problem on a grid of size N1×, N2×, N3, the polarization τ
(Eq. (1b)) is simply evaluated at grid points xα , then a Fast Fourier Transform (FFT) is used to evaluate τ̂ (ka) for a ∈ J
(=∏

d=1,3{−(Nd − 1)/2, (Nd − 1)/2}, with Nd being odd), then the Green operator is applied on a truncated Fourier space 
(Eq. (2) with a ∈ J ) and finally the strain at grid points xα is deduced from an inverse FFT. A new polarization field can be 
evaluated from this strain field and so on.

However, if using a pointwise evaluation of the stiffness tensor on points xα to evaluate the polarization (c(xα) used 
in Eq. (1b)) is simple and common, it is also questioning: isn’t there any better choice especially when a grid point lies 
close to a material interface? In line with previous works [1,2,10], we propose to work with a locally filtered homogenized 
behavior c̃ defined by a uniform filter of shape ω centered around xα , acting on phase indicator functions to define phase 
volume fractions, and a homogenization rule (HR) accounting for these volume fractions and the corresponding behaviors: 
c̃(xα) = HR(c, ω(xα)).

When considering sufficiently refined grids, most of the surfaces ω(xα) consist of a single phase and c̃(xα) = c(xα). 
When at least two phases belong to ω(xα), their volume fractions f i(xα) are evaluated (for example by averaging indicator 
functions evaluated on a refined grid) and Voigt or Reuss homogenization rules can be used as proposed previously in a 
slightly different context [2]:

c̃(xα) = Voigt
(
c,ω(xα)

) =
N phase∑

i=1

f i(xα)ci (3)

c̃(xα) = Reuss
(
c,ω(xα)

) =
(N phase∑

i=1

f i(xα)c−1
i

)−1

(4)

ci are the stiffness tensors of the phases present within ω(xα).
In addition, a new homogenization rule based on the solution of a two-phase multilayered microstructure is proposed 

when two phases, separated by an interface, belong to ω(xα). In that case, in addition to the volume fractions f1(xα) and 
f2(xα), a planar approximation of the interface crossing the filter must be evaluated. Using P and OP respectively for the 
“in-plane” and “out-of-plane“ components (with respect to the approximate planar interface) of the stress σ and strain ε
tensors, the interface and averaging conditions read:{

σ OP
1 = σ OP

2 = σ OP

εP
1 = εP

2 = εP
(5a)

{
f1σ

P
1 + f1σ

P
2 = σ P

f2ε
OP
1 + f2ε

OP
2 = εOP

(5b)

Solving this set of equations leads to the definition of the “2-layer” homogenized stiffness tensor.
In the following, the three homogenization rules are applied with different filter radii, to a simple 2D microstruc-

ture, a disk (radius π
15 ∼ 0.21) centered within a square unit cell (size 1×1). Both inclusion and matrix have an elastic 

isotropic behavior with the same Poisson coefficient, ν = 0.3, and the elastic contrast is given by the Young modulus ratio, 
Einclusion/Ematrix . The loading is a uniaxial average strain (1%). The classical fixed-point algorithm described in Section 1 is 
used with a 10−4 stress equilibrium criterion (see definition in [9]). The spatial resolution is defined by the number of 
pixels per side of the unit cell. The filter radius is defined with respect to the pixel size: a radius of 0.5 corresponds to 
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