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Heat flux expressions are derived for multibody potential systems by extending the 
original Hardy’s methodology and modifying Admal & Tadmor’s formulas. The continuum 
thermomechanical quantities obtained from these two approaches are easy to compute 
from molecular dynamics (MD) results, and have been tested for a constant heat flux 
model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The 
convergence criteria and affecting parameters, i.e. spatial and temporal window size, and 
specific forms of localization function are found to be different between the two systems. 
The conservation of mass, momentum, and energy are discussed and validated within this 
atomistic–continuum bridging.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The success of continuum mechanics on predicting material response and failure in the macroscopic length scale is 
undeniable. Accompanied with the development of new techniques of reducing feature size, the applicability of continuum 
mechanics to fine scale phenomena attracts increasing attention. There is a growing need to interpret continuum concepts 
and laws in terms of atomistic/molecular behaviors to extend the concepts of continuum mechanics such as stress and strain 
to nano-scale. Classical molecular dynamics (MD) simulations have been widely used to capture the microscopic behaviors 
with atomistic resolution. Even though classical MD cannot resolve the electronic degrees of freedom, which is critical for 
understanding chemical reactions, bond breaking, and some of other fundamental aspects of atomic interactions, it can 
address the interaction of up to millions of atoms with satisfying accuracy thus being well suited to investigate nano-scale 
phenomena [1–3]. In MD simulations, the trajectories of interacting atoms are computed based on Newton’s laws of motion, 
where the force on each atom is obtained from the spatial derivative of the interatomic potential energy.

The atomistic variables retrieved from MD simulations have been attempted to interpret the continuum quantities, in 
order to enable the multiscale linkage between microscopic and macroscopic scales in either hierarchical or concurrent 
modeling [4–12]. Virial stress by Clausius [13] and Maxwell [14,15] is probably the first attempt to derive microscopic 
definitions of stress tensor through the so-called virial theorem. Virial stress has been widely used in atomistic simulations 
due to its simple form and ease of computation. Irving and Kirkwood [16] developed point-wise stress tensor and heat flux 
vector as a statistical average of atomistic variables in their classical paper on the equations of hydrodynamics. However, 
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the definitions of stress and heat flux are difficult to implement in atomistic simulations because the formulation involves 
a series expansion of the Dirac delta function and the probability density distribution function of the dynamic ensemble 
which is usually not known a prior. In order to obtain the stress and heat flux fields from MD simulations of non-equilibrium 
systems, Hardy [17,18] established conservation laws in which continuum thermomechanical fields are defined in terms of 
atomistic quantities through a localization function. The so-called Hardy stress has arbitrary spatial resolution and is often 
used in atomistic simulations [19–22]. However, Hardy’s formulation has been explicitly based on the assumption of pair 
interatomic potential. Zimmerman et al. [21,22] examined the conditions under which the formulas could be valid and 
extended Hardy’s work to include embedded atom method (EAM) potentials. Chen [23] further attempted formulating the 
stress and heat flux expressions in Hardy’s framework to include three-body potentials of the Tersoff type [24,25] and the 
Stillinger–Weber type [26]. Multibody potentials have been considered by Delph [27], who discussed the applicability of 
Hardy’s approach in more general context. However, the ambiguity on how to distribute the total potential energy among 
the atoms still remains one of the difficulties to extend Hardy’s formulation to general multibody potential systems.

Murdoch [28–32] developed stress and heat flux expressions in a similar manner with Hardy by directly taking spatial 
average of the atomistic equation of motion with a normalized weighting function. Note that, in this work, Murdoch also 
considered temporal averaging besides spatial averaging to identify the computed quantities with experimentally measured 
values that are local averages of molecular behaviors in both space and time. In contrast to Hardy’s approach, Murdoch’s ap-
proach does not explicitly restrict the type of interatomic potentials for the systems under study. However, the disadvantage 
is the multiple integration involved in the resulting expressions, which makes it comparably more computationally expen-
sive to implement for MD simulations. Admal and Tadmor [33] adopted Murdoch’s methodology to avoid the ambiguities 
of energy decomposition among the atoms. By conducting combined ensemble and spatial averaging, Admal and Tadmor 
developed stress and heat flux expressions suitable for atomistic modeling.

Due to the lack of consensus on the definitions of continuum thermomechanical quantities in terms of atomistic variables 
that satisfy the conservation equations, in this study, we will discuss and compare the thermomechanical expressions devel-
oped by different approaches, with special focus on the heat flux definitions from Hardy and Admal & Tadmor. In Section 2, 
we briefly recall Hardy’s formalism and extend it to multibody potential systems in the similar manner as Delph [27]. The 
validity of the conservation of mass, momentum, and energy are examined in detail. In Section 3, the potential part of heat 
flux expression is proposed the same as Hardy’s original formulae and that in Admal & Tadmor’s work. The energy density 
expression can be derived from the conservation of energy and involves integration over time. In Section 4, constant heat 
flux MD models are established for a crystalline iron described by the EAM potential and a coarse-grained (CG) model of 
amorphous polyethylene (PE) polymer system which involves up to four-body potentials. The expressions from Hardy’s and 
Admal & Tadmor’s methodologies are employed to compute the heat flux vectors in the two systems. Balance of energy is 
also investigated numerically in Hardy’s and Admal & Tadmor’s frameworks.

2. Expressions of the thermomechanical quantities involving multibody potentials using Hardy’s approach

Hardy’s original work can be found in Refs. [17,18]. Here we apply a similar procedure to obtain the stress and heat flux 
expressions for multibody potential systems. The essence of Hardy’s approach is to link the continuum and atomistic scales 
through a localization function, ψ(x, t), which assigns weights to the atoms that contribute to the interested continuum 
quantities at the spatial point x and time t . Hardy defines mass density, ρ(x, t), momentum density, p(x, t), and energy 
density, eh(x, t), as follows:

ρ(x, t) :=
∑

i

miψ
(
ri − x

)
(2.1a)
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∑

i

miviψ
(
ri − x

)
(2.1b)
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∑
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(2.1c)

where mi , vi , ri , and φi are the mass, velocity, position, and potential energy of atom i. Superscript ‘h’ represents the 
thermomechanical expressions of Hardy’s approach. The total potential energy of the system � = ∑

i φ
i . The continuum 

velocity, v(x, t), is given by

v(x, t) := ρ(x, t)−1p(x, t) (2.2)

The localization function, ψ(x), has the dimension of inverse volume that satisfies 
∫
R3 ψ(x)dx = 1. It can also be proved 

that

ψ
(
ri − x

)− ψ
(
r j − x

)= −ri j · ∇B
(
x; ri, r j) (2.3)
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