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We propose a new implementation of the finite element approximation of eddy current 
problems using, as the principal unknown, the magnetic field. In the non-conducting region 
a scalar magnetic potential is introduced. The method can deal automatically with any 
topological configuration of the conducting region and, being based on the search of a 
scalar magnetic potential in the non-conducting region, has the advantage of making use 
of a reduced number of unknowns. Several numerical tests are presented for illustrating 
the performance of the proposed method; in particular, the numerical simulation of a new 
type of transformer of complicated topological shape is shown.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Eddy current equations are a well-known approximation of Maxwell equations obtained by disregarding the displace-
ment current term; as a consequence, wave propagation phenomena are not taken into account, and only diffusion of 
electromagnetic fields is considered.

This is typically the case of “slow” fields, or of low frequency time-harmonic problems, usually appearing in electrotech-
nics. For instance, induction heating, transformers, magnetic levitation, non-destructive testing, and biomedical identification 
problems can be modeled by the eddy current equations.

Many papers have been devoted to the numerical simulation of these problems: let us only refer to the book by Alonso 
Rodríguez and Valli [1] and to the references therein.

As it is well-known, the time-dependent Maxwell equations read:⎧⎪⎪⎨⎪⎪⎩
∂D
∂t

− curlH = −J Maxwell–Ampère equation

∂B
∂t

+ curlE = 0 Faraday equation,

(1)

where the physical quantities that appear are the magnetic field H, the electric field E , the magnetic induction B, the 
electric induction D and the electric current density J .

When the problem is driven by an applied current density J e , one needs to consider the generalized Ohm law
J = σE + J e , where σ is the electric conductivity (vanishing in non-conducting regions). Moreover, a linear dependence 
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of the form D = εE , B = μH is usually assumed; here ε and μ are the electric permittivity and magnetic permeability, 
respectively. In many physical and engineering problems, the region of interest is a non-homogeneous and non-isotropic 
medium: therefore, σ , ε and μ are not scalar constants, but are symmetric and uniformly positive definite matrices (with 
entries that are bounded functions of the space variable).

The system of equations obtained when the displacement current term ∂D
∂t is disregarded is the eddy current system:⎧⎨⎩

curlH= σE +J e

μ
∂H
∂t

+ curlE = 0.
(2)

The reader interested in a precise mathematical justification of this model is referred to the papers by Alonso [2], Ammari 
et al. [3], and Costabel et al. [4].

Although the same approach we are going to propose can be used for the time-dependent case, for the sake of simplicity 
in this paper we prefer to focus on the time-harmonic case, namely, the applied current density Je is an alternating current, 
having the form J e(x, t) = J∗(x) cos(ωt + φ), where J ∗(x) is a real-valued vector function, ω �= 0 is the angular frequency 
and φ is the phase angle. This is equivalent to the representation

J e(x, t) = Re
[

J∗(x)eı(ωt+φ)
]

= Re
[
Je(x)eıωt] ,

where we have introduced the complex-valued vector function Je(x) := J∗(x)eıφ .
Accordingly, we look for a time-harmonic solution given by

E(x, t) = Re
[
E(x)eıωt] , H(x, t) = Re

[
H(x)eıωt] ,

and the time-harmonic eddy current equations, derived from (2) under these assumptions, read{
curl H = σE + Je

curl E + ıωμH = 0.
(3)

Note that for the uniqueness of the electric field in the non-conducting region one needs additional conditions. However 
we are not interested in the computation of that quantity, hence the reader interested to the complete system can refer to 
Alonso Rodríguez and Valli [1].

For solving these equations, the most popular approaches are based on vector potentials. Denoting by �C the conducting 
region and by �I the non-conducting region, the most classical method is that using a vector potential A of the mag-
netic induction μH in the whole computational domain � and a scalar electric potential V C in the conducting region �C , 
satisfying curl A = μH in � and − grad V C = E|�C + ıωA|�C in �C .

For numerical approximation this approach is rather expensive, as one has to discretize a vector field in the whole 
domain and a scalar function in the conducting region. Moreover, if classical Lagrange nodal elements are used for the 
approximation of each single component of A, gauging is compulsory (namely, additional restriction on A have to be intro-
duced); moreover, the efficiency of the scheme is not guaranteed in the presence of re-entrant corners (see, e.g., Costabel 
et al. [5]). On the other hand, if edge elements are employed for the approximation of the complete vector field A, a La-
grange multiplier has to be introduced or the resulting linear system turns out to be singular, and in any case it needs 
special care for being solved. Let us however mention that in this framework one of the most efficient method is that for 
which gauging is performed by adding a perturbation term εA in the non-conducting region (gauging by “regularization”: 
see Schöberl and Zaglmayr [6], Ledger and Zaglmayr [7]); an important feature of this strategy is that it is well-suited for 
high-order approximation.

An alternative approach, with a smaller number of unknowns, is to use the formulation in terms of the magnetic field and 
to introduce a scalar magnetic potential in the non-conducting region, (see, e.g., Bossavit [8], Alonso Rodríguez et al. [9], 
Bermúdez et al. [10]). An even cheaper way is based on the coupling of the magnetic field in the conducting domain 
with the flux of the magnetic induction on the interface, thus eliminating the need of considering unknowns inside the 
non-conducting region: in other words, the magnetic potential in the non-conducting region is eliminated by using potential 
theory (see, e.g., Bossavit and Vérité [11], Meddahi and Selgas [12]). However, it is worth noting that both approaches have 
to face difficulties arising from the topology of the non-conducting domain.

In fact, in general topological situations the scalar magnetic potential is a multivalued function. More precisely it is 
known that if the insulator is not simply-connected there are closed curves contained in �I that are not the boundary of 
any surface contained in �I ; the space of scalar magnetic potentials includes multivalued functions with a constant jump 
across suitable surfaces “cutting” the non-bounding cycles of �I .

The identification of such surfaces can be a difficult task (pioneering works dealing with this aspect are due to 
Kotiuga [13–15]; see also the in-depth analysis of the importance of topological issues in electromagnetism presented in 
Hiptmair [16], Gross and Kotiuga [17]). However it is useful to remark that the key point is that the gradient of a multi-
valued function jumping on one of these surfaces is a loop field, namely, a curl-free vector field whose line integral on at 
least one closed curve contained in �I is different from 0 (this closed curve is precisely the non-bounding cycle cut by the 
surface). For a suitable formulation in terms of a scalar magnetic potential what is really needed are these loop fields.
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