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In a numerical solution of the Maxwell–Vlasov system, the consistency with the charge 
conservation and divergence conditions has to be kept solving the hyperbolic evolution 
equations of the Maxwell system, since the vector identity ∇ · (∇ × �u) = 0 and/or 
the charge conservation of moving particles may be not satisfied completely due to 
discretization errors. One possible method to force the consistency is the hyperbolic 
divergence cleaning. This hyperbolic constraint formulation of Maxwell’s equations has 
been proposed previously, coupling the divergence conditions to the hyperbolic evolution 
equations, which can then be treated with the same numerical method. We pick up this 
method again and show that electrostatic limit may be obtained by accentuating the 
divergence cleaning sub-system and converging to steady state. Hence, the electrostatic 
case can be treated by the electrodynamic code with reduced computational effort. In 
addition, potential boundary conditions as often given in practical applications can be 
coupled in a similar way to get appropriate boundary conditions for the field equations. 
Numerical results are shown for an electric dipole, a parallel-plate capacitor, and a 
Langmuir wave. The use of potential boundary conditions is demonstrated in an Einzel 
lens simulation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Particle-in-cell (PIC) codes are used to find an approximate solution of the collision-free Boltzmann equation [1,2], the 
so-called Vlasov equation:

∂ fα
∂t

+ �vα
∂ fα
∂�xα

+ �F
mα

∂ fα
∂ �vα

= 0. (1)

Here, fα = fα
(�x, �v, t

)
is the particle distribution function of species α depending on the position �x, the velocity �v and the 

time t . In addition, m is the particle mass, and �F is the Lorentz force, given by

�F = qα

(�E + �vα × �B
)

(2)

with the particle charge q, the electric field �E and the magnetic field �B .
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The electromagnetic fields �E and �B are solutions of the Maxwell’s equations

∂ �E
∂t

− c2∇ × �B = −
�j
ε0

, (3)

∂ �B
∂t

+ ∇ × �E = 0, (4)

∇ · �E = ρ

ε0
, (5)

∇ · �B = 0. (6)

Here, the source terms are the charge density ρ and the current density �j, defined as moments of the distribution function 
by

ρ(�x, t) = q

∫
R3

f (�x, �v, t)d3 v,

�j(�x, t) = q

∫
R3

�v f (�x, �v, t)d3 v. (7)

In addition, the charge conservation equation reads as

∂ρ

∂t
+ ∇ · �j = 0. (8)

This coupled system is usually called the Maxwell–Vlasov system and is well-defined in the following sense. If the initial 
values satisfy the divergence constraints (5) and (6), the boundary values are consistent with these constraints, and the 
charge conservation (8) holds for all times, then the solution fα, �E, �B of the hyperbolic evolution equations (1), (3), and (4)
satisfies the whole set of the Maxwell–Vlasov equations for all times. The reason is that the divergence applied to the curl 
of a vector is zero. Hence, the divergence of Eq. (4) directly shows that Eq. (6) is satisfied at all times if satisfied initially. 
The same is true for Eq. (5) if the charge is conserved according to (8).

Due to the approximations used, this does not necessarily apply to a PIC code. Here, the particle distribution function is 
approximated as the linear combination of N δ-functions with a weighting factor wk , i.e.,

f
(�x, �v, t

) ≈
N∑

k=1

wkδ
(�x − �xk(t)

)
δ
(�v − �vk(t)

)
. (9)

This approximation is interpreted as N particles with the positions �xk , the velocities �vk and the particle weights wk . The 
distribution function of the Vlasov equation, which depends on three space and three velocity coordinates and the time, 
is then approximated by the time evolution of the particles in phase space. The path of every particle is determined by a 
system of ordinary differential equations for velocity and spatial location, called Lorentz equations.

These approximations of the Vlasov equation as well as Maxwell’s equations changes the situation. Due to numerical er-
rors the charge may not be conserved exactly and the divergence of a curl may vanish only up to some discretization errors. 
All these approximation errors will then affect the consistency within the Maxwell–Vlasov system. Hence, the approximate 
solution fα, �E, �B of the approximated hyperbolic evolution equations (1), (3), and (4) does not guarantee the validity of 
discrete versions of (5) and (6) anymore. Moreover, errors of the divergence constraints may increase during a calculation 
and may produce instabilities or non-physical solutions [3,2,4].

Different approaches have been proposed to enhance the consistency also in the approximate case. Numerical methods 
that automatically preserve the algebraic conditions of ∇ ·(∇ × �u) = 0, which have been derived for Maxwell’s or other equa-
tions, are not satisfying in this case, since they do not induce consistency regarding charge conservation. Hence, a constraint 
formulation of the Maxwell–Vlasov equations has to be introduced that couples the evolution equations with the divergence 
constraints. One of the basic concepts is to introduce Lagrange multipliers into the hyperbolic evolution equations that al-
lows the coupling to the divergence constraints. Such an enlarged system was solved numerically within a finite difference 
framework by Boris [5], called the projection method, or within a finite element scheme via a penalization technique by 
Assous et al. [6]. An extension of the Lagrange multiplier approach has been proposed by Munz et al. [7,8] for Maxwell’s 
equations and for the Maxwell–Vlasov equations [9]. It approximated the constrained system by approximating the infinite 
propagation speed by a finite one to obtain a set of hyperbolic evolution equations. The big advantage is that all equations 
remain essentially hyperbolic and can be numerically solved by any numerical approach for hyperbolic equations.

An alternative is the development of a numerical approximation that satisfies a discrete analogy of the necessary vector 
identities. In recent time, some novel methods have been developed that automatically handle the charge conservation 
in the full Maxwell system in the general case. In [10,11], this method is extended to unstructured grids and arbitrary 
order in time and space. To establish a discrete consistency seems to be the best approach, but it needs special numerical 
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