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Fractional derivatives and integrals are convolutions with a power law. Multiplying by
an exponential factor leads to tempered fractional derivatives and integrals. Tempered
fractional diffusion equations, where the usual second derivative in space is replaced
by a tempered fractional derivative, govern the limits of random walk models with
an exponentially tempered power law jump distribution. The limiting tempered stable
probability densities exhibit semi-heavy tails, which are commonly observed in finance.
Tempered power law waiting times lead to tempered fractional time derivatives, which
have proven useful in geophysics. The tempered fractional derivative or integral of a
Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long
range dependence. The increments of this process, called tempered fractional Gaussian
noise, provide a useful new stochastic model for wind speed data. A tempered fractional
difference forms the basis for numerical methods to solve tempered fractional diffusion
equations, and it also provides a useful new correlation model in time series.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional derivatives were invented by Leibnitz soon after the more familiar integer order derivatives [38,52], but have
only recently become popular in applications. They are now used to model a wide variety of problems in physics [24,
35,38,50,51,55,65], finance [23,27,37,42,60,61], biology [2,4,22,26,36], and hydrology [1,7,8,15,17,62]. Fractional derivatives
can be most easily understood in terms of their connection to probability [45,46]. Einstein [20] explained the connection
between random walks, Brownian motion, and the diffusion equation ∂t p(x, t) = ∂2

x p(x, t). Sokolov and Klafter [63] review
the modern theory of anomalous diffusion, where the integer order derivatives in the diffusion equation are replaced by
their fractional analogues: ∂

β
t p(x, t) = ∂α

x p(x, t). A fractional space derivative of order α < 2 corresponds to heavy tailed
power law particle jumps P[ J > x] ≈ x−α (the famous Lévy flight), while a fractional time derivative of order β < 1 models
heavy tailed power law waiting times P[W > t] ≈ t−β between jumps. Hence fractional space derivatives model anomalous
super-diffusion, where a plume of particles spreads faster than the traditional diffusion equation predicts, and fractional
time derivatives model anomalous sub-diffusion.

The goal of this paper is to describe a new variation on the fractional calculus, where power laws are tempered by
an exponential factor. This exponential tempering has both mathematical and practical advantages. Mantegna and Stanley
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[40] proposed a truncated Lévy flight to capture the natural cutoff in real physical systems. Koponen [29] introduced the
tempered Lévy flight as a smoother alternative, without a sharp cutoff. Cartea and del-Castillo-Negrete [12] developed
the tempered fractional diffusion equation that governs the probability densities of the tempered Lévy flight. Unlike the
truncated model, tempered Lévy flights offer a complete set of statistical physics and numerical analysis tools. Random
walks with exponentially tempered power law jumps converge to a tempered stable motion [13]. Probability densities of the
tempered stable motion solve a tempered fractional diffusion equation that describes the particle plume shape [3], just like
the original Einstein model for traditional diffusion. Tempered fractional derivatives are approximated by tempered fractional
difference quotients, and this facilitates finite difference schemes for solving tempered fractional diffusion equations [3]. The
tempered diffusion model has already proven useful in applications to geophysics [44,70,71] and finance [10,11]. In finance,
the tempered stable process models price fluctuations with semi-heavy tails, resembling a pure power law at moderate
time scales, but converging to a Gaussian at long time scales [5]. Since the anomalous diffusion eventually relaxes into a
traditional diffusion profile at late time, this model is also called transient anomalous diffusion [71].

Kolmogorov [28] invented a new stochastic model for turbulence in the inertial range. Mandelbrot and Van Ness [39]
pointed out that this stochastic process is the fractional derivative of a Brownian motion, and coined the name fractional
Brownian motion. Fractional Brownian motion can exhibit a very useful property called long range dependence, where correla-
tions fall off like a power law with time lag. A new variation on this model, called tempered fractional Brownian motion, is the
tempered fractional derivative of a Brownian motion [47]. Tempered fractional Brownian motion can exhibit semi-long range
dependence, with correlations that fall off like a power law at moderate time scales, but then eventually become short-range
dependent at long time scales. This extends the Kolmogorov model for turbulence to also include low frequencies, and
in fact tempered fractional Brownian motion provides a time-domain stochastic process model for the famous Davenport
spectrum of wind speed [6,16,25,53], which is used to design electric power generation facilities.

2. Tempered fractional diffusion

We begin by recalling the connection between random walks, Brownian motion, and the diffusion equation (see [46] for
complete details). Given a random walk of mean zero particle jumps S(n) = X1 +· · ·+ Xn , the Central Limit Theorem implies
that n−1/2 S(nt) ⇒ B(t) in distribution. The probability density p(x, t) of the Brownian motion limit B(t) solves the diffusion
equation ∂t p(x, t) = D∂2

x p(x, t). This useful connection between Brownian motion, random walks, and the diffusion equation
assumes finite variance particle jumps. Power law jumps with density f (x) = Cαx−α−11[C1/α,∞)(t) for 1 < α < 2 have a
finite mean but an infinite variance. Subtract the mean, and apply the extended central limit theorem [46, Theorem 3.37] to
get n−1/α S(nt) ⇒ A(t). Now the probability density p(x, t) of the α-stable Lévy motion A(t) solves the fractional diffusion
equation ∂t p(x, t) = D∂α

x p(x, t).
Tempered fractional diffusion applies an exponential tempering factor to the particle jump density. Consider a random

walk Sε(n) with particle jump density

fε(x) = C−1
ε x−α−1e−λx1[ε,∞)(x) where Cε =

∞∫
ε

x−α−1e−λxdx (1)

using the incomplete gamma function, and define the Poisson jump rate

λε = D
α

Γ (1 − α)
Cε (2)

for any ε > 0. To ease notation, we begin with the case of positive jumps.

Theorem 2.1. Suppose 0 < α < 1. Given a random walk Sε(n) = Xε
1 + · · · + Xε

n with independent jumps, each having probability
density function (1), and an independent Poisson process Nε

t with rate (2), as ε → 0 we have the convergence

Sε
(
Nε

t

) ⇒ A(t) (3)

where the limit is a tempered stable process whose probability density function p(x, t) has Fourier transform

p̂(k, t) = e−t D[(λ+ik)α−λα ] (4)

for any t ≥ 0.

Proof. The Poisson random variable satisfies P(Nε
t = n) = e−λεt(λεt)n/n! for n ≥ 0, and then

Pε(x, t) = P
(

Sε
(
Nε

t

) ≤ x
) =

∞∑
n=0

P
(

Sε(n) ≤ x
∣∣Nε

t = n
)
P
(
Nε

t = n
)

by the law of total probability. Apply the Fourier–Stieltjes transform f̂ (k) = ∫
e−ikx F (dx) where f (x) = F ′(x), noting that

f̂ε(k)n is the Fourier transform of the probability distribution of Sε(n), to get
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