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In this paper, a neutral-fractional equation is introduced and analyzed. In contrast to 
the general time- and space-fractional diffusion equation, the neutral-fractional equation 
contains fractional derivatives of the same order α, 1 ≤ α ≤ 2 both in space and in 
time. As it has been shown earlier, solutions of the neutral-fractional equation can be 
interpreted as damped waves with the constant propagation velocities that means that 
this equation inherits some characteristics of the wave equation. Otherwise, the first 
fundamental solution of the one-dimensional neutral-fractional equation is known to be 
a spatial probability density function evolving in time and is thus related to the diffusion 
processes. In this paper, we investigate the entropy and the entropy production rate of the 
neutral-fractional equation and show that both of them are strongly connected to those of 
the diffusion processes. Thus a wave–diffusion dualism of the processes described by the 
neutral-fractional equation is established.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Within the last few decades a lot of results related both to the theory of the fractional differential equations and their 
applications in physics, chemistry, engineering, medicine, biology, etc. have been obtained (see e.g. [3,9–17,21,24,25,28,36]
to mention only few of many recent publications).

In particular, several models of the anomalous transport processes in the form of the time- and/or space-fractional 
diffusion–wave equations have been considered by a number of researchers. Anomalous transport processes include the 
anomalous diffusion (sub- and supper-diffusion), the anomalous wave propagation, and the diffusion–wave processes that 
were described until now as some intermediate processes between the diffusion and the wave propagation. In this paper, 
another interpretation of the processes described by some partial differential equations of fractional order is suggested. 
Namely, we show that they are not a mixture of a diffusion process and a wave propagation, but rather a new phenomena 
that behaves as a diffusion with respect to some physical characteristics whereas it looks like a wave regarding other 
characteristics. Thus one can speak about a wave–diffusion dualism of the processes described by these equations that we 
call the neutral-fractional equations and that were previously referred to as the neutral-fractional diffusion equations or the 
fractional wave equations depending on what characteristics one was interested in.

The neutral-fractional equations we consider in this paper contain fractional derivatives of the same order α, 1 ≤ α ≤ 2
both in space and in time. The fractional derivative in time is interpreted in the Caputo sense whereas the space-fractional 
derivative is taken in form of an inverse operator to the fractional Riesz potential (Riesz fractional derivative).

As has been shown in [14], both a maximum location and the “gravity”- and “mass”-centers of the first fundamental 
solution to the neutral-fractional equation propagate with the constant velocities as the solutions to the wave equation 
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(α = 2), but in contrast to the wave equation these velocities are different from each other for a fixed value of α, 1 <
α < 2. Let us mention that the propagation velocity v of a maximum location of the first fundamental solution to the 
time-fractional diffusion–wave equation of the order α is determined by the formula (see e.g. [20,22])

v(t,α) = Cαt
α
2 −1.

For 1 < α < 2, the propagation velocity v depends on time t and is a decreasing function that varies from +∞ at time 
t = 0+ to zero as t → +∞ that makes it difficult to interpret solutions to the time-fractional diffusion–wave equation as 
some waves.

It is well known that the anomalous transport processes can be modeled in terms of the continuous time random walk 
processes and described by the time- and/or space-fractional differential equations that are derived from the stochastic 
models for a special choice of the jump probability density functions with the infinite first or/and second moments (see 
e.g. [11,17,28]). The neutral-fractional equation can be obtained from the continuous time random walk model, too. In [16], 
the case of the waiting time probability density function and the jump length probability density function with the same 
power law asymptotic behavior has been considered. Under some standard assumptions, the neutral-fractional equation can 
be asymptotically derived from the continuous time random walk model mentioned above (see [16] for details). Thus it is 
not a surprise that the fundamental solution to the neutral-fractional equation can be interpreted as a probability density 
function. In this paper, we investigate the entropy and the entropy production rate of the neutral-fractional equation and 
show that both of them are strongly connected to those of the diffusion processes.

The concept of entropy was first introduced in the macroscopic thermodynamics and then extended for description of 
some phenomena in statistical mechanics, information theory, ergodic theory of dynamical systems, etc. Historically, many 
definitions of entropy were proposed and applied in different knowledge areas. In this paper, we employ the statistical 
concept of entropy that goes back to Shannon and was introduced by him in the theory of communication and transmission 
of information (see [34]). The entropy of the processes governed by the time- and space-fractional diffusion equations was 
considered in [10,12] and [30,31], respectively.

From the mathematical viewpoint, the neutral-fractional equation we deal with in this paper was considered for the first 
time in [5], where an explicit formula for the fundamental solution of the one-dimensional neutral-fractional equation was 
derived. In [26], a space–time fractional diffusion–wave equation with the Riesz–Feller derivative of order α ∈ (0, 2] and 
skewness θ and with the Caputo fractional derivative of order β ∈ (0, 2] was investigated in detail. A particular case of this 
equation that for θ = 0 corresponds to our one-dimensional neutral-fractional wave equation was mentioned in [26], too. 
In [29], a fundamental solution to the one-dimensional neutral-fractional equation was deduced and analyzed in terms of 
the Fox H-function.

In [14], the one-dimensional neutral-fractional equation was investigated from the viewpoint of an interpretation of its 
solutions as the damped waves. Its fundamental solution was derived in terms of elementary functions for all values of α, 
1 ≤ α < 2. For the fundamental solution, both its maximum location and its maximum value were determined in closed form 
as well as the propagation velocities of the maximum location and the “gravity”- and “mass”-centers of the fundamental 
solution. In [13], a multi-dimensional neutral-fractional equation with a special focus given to the three-dimensional case 
was analyzed. The fundamental solution to this equation is a spherically symmetric function that possesses some nice 
integral representations and can be even written down in explicit form in terms of elementary functions in the one- and 
three-dimensional cases. In contrast to the one-dimensional case, the fundamental solution cannot be interpreted as a 
probability density function in the two- and three-dimensional cases and thus these equations cannot be employed for 
modeling of any diffusion processes. Instead, their fundamental solutions can be interpreted as some damped waves with 
the constant phase velocities that depend only on the order α of the neutral-fractional equation.

In this paper, we mainly deal with the one-dimensional neutral-fractional equation with a special focus given to an in-
terpretation of its solutions as some diffusion processes. For the sake of completeness, the multi-dimensional case and some 
results regarding an interpretation of the solutions as the damped waves are also mentioned.

The rest of the paper is organized as follows. In Section 2, the basic definitions, problem formulation, and some analytical 
results for the initial-value problems for the multi-dimensional neutral-fractional equation are presented. In particular, the 
explicit formulas for the fundamental solutions for the one- and three-dimensional equations are derived in terms of the 
elementary functions for all values of α, 1 ≤ α < 2. In the two-dimensional case, such simple explicit formulas seem to be 
not available. Section 3 is devoted to a probabilistic interpretation of the solutions to the one-dimensional neutral-fractional 
equation. In particular, the Shannon entropy and the entropy production rate are calculated. As in the case of the diffusion 
equation, the entropy production rate decreases with the time as t−1. Surprisingly, the law for the entropy production rate 
does not depend on the equation order α and it is twice as much as the entropy production rate of the diffusion equation. 
In Section 4, an interpretation of the solutions to the neutral-fractional equation as damped waves is presented. In particular, 
we show that the phase velocity of the fundamental solution of the neutral-fractional equation is a constant that depends 
only on the equation order α. To illustrate analytical findings, some results of numerical calculations, plots, their physical 
interpretation and discussion are presented. In Section 5, some conclusions and open problems for further research are 
formulated.
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