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The continuous time random walk, introduced in the physics literature by Montroll and 
Weiss, has been widely used to model anomalous diffusion in external force fields. One 
of the features of this model is that the governing equations for the evolution of the 
probability density function, in the diffusion limit, can generally be simplified using 
fractional calculus. This has in turn led to intensive research efforts over the past decade to 
develop robust numerical methods for the governing equations, represented as fractional 
partial differential equations.
Here we introduce a discrete time random walk that can also be used to model anomalous 
diffusion in an external force field. The governing evolution equations for the probability 
density function share the continuous time random walk diffusion limit. Thus the discrete 
time random walk provides a novel numerical method for solving anomalous diffusion 
equations in the diffusion limit, including the fractional Fokker–Planck equation. This 
method has the clear advantage that the discretisation of the diffusion limit equation, 
which is necessary for numerical analysis, is itself a well defined physical process. Some 
examples using the discrete time random walk to provide numerical solutions of the 
probability density function for anomalous subdiffusion, including forcing, are provided.

Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved.

1. Introduction

Following the seminal Physics Reports article by Metzler and Klafter in 2000 [1] there has been an explosion of literature 
on using the physically motivated continuous time random walk (CTRW) model of Montroll and Weiss [2] together with the 
mathematics of fractional calculus [3] to provide mathematical models of anomalous diffusion [4–12]. Further interest has 
been stimulated by large numbers of papers reporting findings of anomalous diffusion in experimental systems [1,13–18]
and large numbers of papers seeking to provide numerical solutions of the models [19–29]; ultimately to compare with 
experimental observations.

Anomalous diffusion, in this research field, has been taken to be stochastic particle motion where the variance, in the 
position of the particle, scales other than linearly with time. In the following we focus on so-called subdiffusion in which 
the variance scales as a sublinear power law in time, i.e.,〈

x(t)2〉 − 〈
x(t)

〉2 ∼ tα (1)

where 0 < α < 1.
In the CTRW model, particles wait for a time t , selected from a waiting time probability density ψ(t), before jumping 

through a distance x, selected from a jump probability density λ(x). Here it is assumed that the waiting time density and 
the jump density are decoupled. The evolution of the probability density function describing the position of the random 
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walk on a lattice at subsequent times is given by a generalised master equation [30]

du(x, t)

dt
=

∑
x′

t∫
0

K
(
x − x′, t − t′)u

(
x′, t′)dt′ (2)

where the kernel is related to the waiting time density and the jump density in Laplace space by

K̂
(
x − x′, s

) = sψ̂(s)
λ(x − x′) − δx,0

1 − ψ̂(s)
. (3)

The hat denotes a Laplace transform with respect to time. In the case of nearest neighbour jumps on a lattice of spacing 
�x, the jump density

λ
(
x − x′) = 1

2
(δx−x′,�x + δx−x′,−�x) (4)

has a finite variance. The generalised master equation for CTRWs with nearest neighbour jumps provides a model for 
standard diffusion if the waiting time density is exponential,

ψ(t) = 1

τ
exp

(
− t

τ

)
, (5)

and it provides a model for subdiffusion if the waiting time density is Mittag–Leffler,

ψ(t) = tα−1

τα
Eα,α

[
−

(
t

τ

)α]
for 0 < α < 1. (6)

The essential difference is that the exponential waiting time density is Markovian and the Mittag–Leffler density is non-
Markovian with an infinite first moment [1].

The diffusion limit of the generalised master equation is found by taking the time and space scales of the random walk, 
characterised by τ and �x respectively, to zero in a way that preserves the scaling relation �x2 ∼ τα , where α = 1 for 
standard diffusion. With the exponential waiting time density the diffusion limit of the generalised master equation results 
in the standard diffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(7)

with

D = lim
�x→0,τ→0

�x2

2τ
. (8)

With the Mittag–Leffler waiting time density, the diffusion limit of the generalised master equation results in the fractional 
diffusion equation

∂u(x, t)

∂t
= Dα0 D1−α

t
∂2u(x, t)

∂x2
, (9)

with [5]

D = lim
�x→0,τ→0

�x2

2τα
, (10)

and the operator 0 D1−α
t is the Riemann–Liouville fractional derivative defined by [3]

0 D1−α
t y(x, t) = 1

	(α)

∂

∂t

t∫
0

y(x, t′)
(t − t′)1−α

dt′. (11)

In the limit α → 1− , Eq. (11) recovers the standard diffusion equation.
The CTRW model has been extended to model anomalous diffusion in an external force field by introducing a bias 

probability for the direction of each step [5]. The bias probability is determined by evaluating the external force field at 
the instant of jumping. In the case where the force field, F (x, t), varies in both space and time, in the diffusion limit, the 
evolution of the probability density function is given by the fractional Fokker–Planck equation [10],

∂u(x, t)

∂t
= Dα0 D1−α

t

(
∂2u(x, t)

∂x2

)
− 1

ηα

∂

∂x

(
F (x, t)0 D1−α

t

(
u(x, t)

))
. (12)

Here ηα = (2βDα)−1 is a fractional friction coefficient and β is a parameter quantifying the strength of the effect of the 
force. If β = 0, Eq. (12) simplifies to Eq. (9). The CTRW formalism has also been extended to model subdiffusion in an 
external force field with reactions [12].
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